Abstract:
Capturing a target image includes activating a first image sensor for capturing the target image. A sequence of images is captured with a second image sensor while the first image sensor remains activated. A determination is made as to whether the sequence of images captured by the second image sensor includes a shutter gesture while the first image sensor remains activated. If a shutter gesture is included in the sequence of images captured by the second image sensor, the first image sensor captures the target image in response.
Abstract:
Capturing a target image includes activating a first image sensor for capturing the target image. A sequence of images is captured with a second image sensor while the first image sensor remains activated. A determination is made as to whether the sequence of images captured by the second image sensor includes a shutter gesture while the first image sensor remains activated. If a shutter gesture is included in the sequence of images captured by the second image sensor, the first image sensor captures the target image in response.
Abstract:
An apparatus includes analog-to-digital (A/D) conversion circuitry coupled to a pixel array. The A/D conversion circuitry includes a voltage ramp generator and a set of column A/D conversion circuits. The voltage ramp generator generates a single slope voltage ramp in a first state and a multiple slope voltage ramp in a second state. The set of column A/D conversion circuits is coupled with the voltage ramp generator. The apparatus further includes calibration circuitry coupled with the set of column A/D conversion circuits and operable to determine digital calibration data to adjust digital image data. The calibration circuitry provides analog calibration data that spans a calibration range to the set of column A/D conversion circuits instead of the analog image data from the pixel array being provided to the set of column A/D conversion circuits.
Abstract:
An apparatus includes analog-to-digital (A/D) conversion circuitry coupled to a pixel array. The A/D conversion circuitry includes a voltage ramp generator and a set of column A/D conversion circuits. The voltage ramp generator generates a single slope voltage ramp in a first state and a multiple slope voltage ramp in a second state. The set of column A/D conversion circuits is coupled with the voltage ramp generator. The apparatus further includes calibration circuitry coupled with the set of column A/D conversion circuits and operable to determine digital calibration data to adjust digital image data. The calibration circuitry provides analog calibration data that spans a calibration range to the set of column A/D conversion circuits instead of the analog image data from the pixel array being provided to the set of column A/D conversion circuits.
Abstract:
A method of an aspect includes acquiring analog image data with a pixel array, and reading out the analog image data from the pixel array. The analog image data is converted to digital image data by performing an analog-to-digital (A/D) conversion using a multiple slope voltage ramp. At least some of the digital image data is adjusted with calibration data. Other methods, apparatus, and systems, are also disclosed.
Abstract:
A random estimation analog-to-digital converter for converting a first analog signal into a digital signal includes a random bit generator, a digital-to-analog converter, a summer, an M-bit analog-to-digital converter, and a digital combiner. The random bit generator generates random least significant bits (LSBs) and the digital-to-analog converter then converts the random LSBs into a second analog signal. The summer subtracts the second analog signal from the first analog signal in the analog domain. The M-bit analog-to-digital converter then converts the modified first analog signal into the most significant bits (MSBs) of the digital image signal. The digital combiner combines the random LSBs with the MSBs in the digital domain to generate the digital signal. In one example, the random LSBs are extra bits that are beyond the maximum resolution of the M-bit analog-to-digital converter.
Abstract:
A random estimation analog-to-digital converter for converting a first analog signal into a digital signal includes a random bit generator, a digital-to-analog converter, a summer, an M-bit analog-to-digital converter, and a digital combiner. The random bit generator generates random least significant bits (LSBs) and the digital-to-analog converter then converts the random LSBs into a second analog signal. The summer subtracts the second analog signal from the first analog signal in the analog domain. The M-bit analog-to-digital converter then converts the modified first analog signal into the most significant bits (MSBs) of the digital image signal. The digital combiner combines the random LSBs with the MSBs in the digital domain to generate the digital signal. In one example, the random LSBs are extra bits that are beyond the maximum resolution of the M-bit analog-to-digital converter.
Abstract:
A method of an aspect includes acquiring analog image data with a pixel array, and reading out the analog image data from the pixel array. The analog image data is converted to digital image data by performing an analog-to-digital (A/D) conversion using a multiple slope voltage ramp. At least some of the digital image data is adjusted with calibration data. Other methods, apparatus, and systems, are also disclosed.