Abstract:
A method for fabricating optoelectronic semiconductor chips and optoelectronic semiconductor chips are disclosed. In embodiments the method comprises depositing a semiconductor layer sequence having an active, the active region being arranged between a first semiconductor layer and a second semiconductor layer on a growth substrate, attaching the semiconductor layer sequence to a carrier and forming a plurality of recesses extending through the carrier, the second semiconductor layer and the active region into the first semiconductor layer. The method further comprises forming first contacts on a first main surface of the carrier, the first main surface facing away from the semiconductor layer sequence, wherein the first contacts are electrically conductively connected to the first semiconductor layer in the region of the recesses and singulating the carrier and the semiconductor layer sequence into the plurality of optoelectronic semiconductor chips, wherein each semiconductor chip has at least one recess.
Abstract:
A method for fabricating optoelectronic semiconductor chips and optoelectronic semiconductor chips are disclosed. In embodiments the method comprises depositing a semiconductor layer sequence having an active, the active region being arranged between a first semiconductor layer and a second semiconductor layer on a growth substrate, attaching the semiconductor layer sequence to a carrier and forming a plurality of recesses extending through the carrier, the second semiconductor layer and the active region into the first semiconductor layer. The method further comprises forming first contacts on a first main surface of the carrier, the first main surface facing away from the semiconductor layer sequence, wherein the first contacts are electrically conductively connected to the first semiconductor layer in the region of the recesses and singulating the carrier and the semiconductor layer sequence into the plurality of optoelectronic semiconductor chips, wherein each semiconductor chip has at least one recess.
Abstract:
A cover for an optoelectronic component includes a body of a first material, the body includes a lower side and, starting from the lower side, a recess for the optoelectronic component, the body includes a side surface adjacent to the lower side, the recess is continued as far as the side surface, a plate of a second material is arranged on the side surface, the second material being transparent for a radiation wavelength of the optoelectronic component, and the body and the plate are connected.