摘要:
A method of making a nanoscale metallic powder is disclosed. The method includes providing a base material comprising a metallic compound, wherein the base material is configured for chemical reduction by a reductant to form a metallic material. The method also includes forming a powder of the base material, the powder comprising a plurality of powder particles, the powder particles having an average particle size that is less than about 1 micron. The method further includes disposing the powder particles into a reactor together with the reductant under an environmental condition that promotes the chemical reduction of the base material and formation of a plurality of particles of the metallic material.
摘要:
Inclusion of relatively small amounts of organic ionic species, such as calcium stearate, in the preparation of an electrically conductive polymer composite composition provides a composition having enhanced electrical properties relative to the composite composition lacking the added organic ionic species. As a result of this enhancement, normally insulating materials which rely upon a conductive filler to render them electrically conductive, can be made to achieve a given level of conductivity using less of the conductive filler than would otherwise be required. As a result, the adverse effects of the conductive filler on the polymer's physical properties can be minimized while maintaining a high level of electrical conductivity.
摘要:
Carbon-nitrogen nanofibers are prepared by contacting a gaseous mixture comprising hydrogen and a carbon-nitrogen compound such as pyridine with a cobalt-iron catalyst at a temperature in the range of about 500-1000° C. The nanofibers are characterized by a structure in which layers emanate from a core catalyst particle and are parallel to each other but not parallel to the length axis of the nanofibers.
摘要:
Doped polyanilines are prepared by contacting aniline with an oxidizing agent such as ammonium peroxydisulfate in aqueous solution at a temperature of at most about 10° C. in the presence of at least one organic sulfonic acid, preferably an alkylbenzenesulfonic acid such as dodecylbenzenesulfonic acid. The products may be blended with thermoplastic resins such as polystyrene to produce blends having excellent static discharge properties.