摘要:
The present invention concerns in situ polymerase chain reaction and provides methods and reagents for identifying cells containing at least one selected nucleic acid sequence which may be derived from the human immunodeficiency virus.
摘要:
The present invention concerns in situ polymerase chain reaction and provides methods and reagents for identifying cells containing at least one selected nucleic acid sequence which may be derived from the human immunodeficiency virus.
摘要:
The present invention relates to the production of biofuels by utilizing efficient biomass digestion and fermentation by a new thermophilic microorganism generated after fusion of two different bacteria Clostridium thermocellum and C. acetobutylicum and properly mutating the fused bacteria to produce biofuels and other economically important chemicals in a single vessel from lignocellulosic derived renewable biomass. All the necessary biochemical digestions and fermentation are carried out by this single thermophilic microorganism in one single vessel eliminating the need for multiple step digestion and fermentation processes, requiring multiple chambers. It also significantly reduces the rate limiting steps where increasing accumulation of alcohol, butanol and other substances become toxic to the very bacteria that produce these biofuels. The single vessel is incubated at high temperatures (45° C. or above) to eliminate the need for periodic stoppage and restarting of the process.
摘要:
As discovered herein, using miRNAs having high homology with both HIV-1 and a co-infecting virus such as HHV-6, HHV-7, or GVB-C, one can inhibit viral replication, more particularly HIV-1 replication using such mutually homologous miRNAs that give rise to the creation of stable triplex formations effective in the downregulation and/or inhibition of viral replication.
摘要:
The present invention relates to the production of biofuels by utilizing efficient biomass digestion and fermentation by a new thermophilic microorganism generated after fusion of two different bacteria Clostridium thermocellum and C. acetobutylicum and properly mutating the fused bacteria to produce biofuels and other economically important chemicals in a single vessel from lignocellulosic derived renewable biomass. All the necessary biochemical digestions and fermentation are carried out by this single thermophilic microorganism in one single vessel eliminating the need for multiple step digestion and fermentation processes, requiring multiple chambers. It also significantly reduces the rate limiting steps where increasing accumulation of alcohol, butanol and other substances become toxic to the very bacteria that produce these biofuels. The single vessel is incubated at high temperatures (45° C. or above) to eliminate the need for periodic stoppage and restarting of the process.
摘要:
As discovered herein, using miRNAs having high homology with both HIV-1 and a co-infecting virus such as HHV-6, HHV-7, or GVB-C, one can inhibit viral replication, more particularly HIV-1 replication using such mutually homologous miRNAs that give rise to the creation of stable triplex formations effective in the downregulation and/or inhibition of viral replication.