Abstract:
A notched-spacer camera module includes a chip-scale package, a lens plate, a spacer ring, and a glue ring. The chip-scale package has an image sensor and a top surface. The spacer ring includes a glue gate having a gate height and a spacer base, having a base height, between the glue gate and the lens plate. The glue ring is between the spacer ring and the top surface and has (i) an outer region between the top surface and a bottom surface of the spacer base, and (ii) an inner region, having an inner thickness, between the top surface and a bottom surface of the glue gate. The lens plate, the spacer ring, the glue ring, and the top surface form a sealed cavity having a cavity height equal to at least a sum of the inner thickness, the gate height, and the base height.
Abstract:
A chip-scale packaging process for wafer-level camera manufacture includes aligning an optics component wafer with an interposer wafer having a photoresist pattern that forms a plurality of transparent regions, bonding the aligned optics component wafer to the interposer wafer, and dicing the bonded optics component wafer and interposer wafer such that each optics component with interposer has a transparent region. The process further includes dicing an image sensor wafer, aligning the pixel array of each image sensor with the transparent region of a respective optics component with interposer, and bonding each image sensor to its respective optics component with interposer. Each interposer provides alignment between its respective optics component center and its respective pixel array center of the image sensor based on the respective transparent region. The interposer further provides a back focal length for focusing light from the optics component onto a top surface of the pixel array.
Abstract:
A method of processing an image sensor system, comprising steps of placing a first cover member on top of an image sensor; coating the image sensor and the first cover member with a dark coating agent; removing the first cover member from the image sensor; placing a second cover member on top of the image sensor; affixing the image sensor on to a permanent mount to form an electrical coupling between the image sensor and the permanent mount; removing the second cover member from the image sensor; wherein the first cover member completely covers a top portion of the image sensor; and wherein the second cover member includes an internal rib configured to form a contact seal with the image sensor.
Abstract:
A chip-scale packaging process for wafer-level camera manufacture includes aligning an optics component wafer with an interposer wafer having a photoresist pattern that forms a plurality of transparent regions, bonding the aligned optics component wafer to the interposer wafer, and dicing the bonded optics component wafer and interposer wafer such that each optics component with interposer has a transparent region. The process further includes dicing an image sensor wafer, aligning the pixel array of each image sensor with the transparent region of a respective optics component with interposer, and bonding each image sensor to its respective optics component with interposer. Each interposer provides alignment between its respective optics component center and its respective pixel array center of the image sensor based on the respective transparent region. The interposer further provides a back focal length for focusing light from the optics component onto a top surface of the pixel array.
Abstract:
A chip-scale packaging process for wafer-level camera manufacture includes aligning an optics component wafer with an interposer wafer having a photoresist pattern that forms a plurality of transparent regions, bonding the aligned optics component wafer to the interposer wafer, and dicing the bonded optics component wafer and interposer wafer such that each optics component with interposer has a transparent region. The process further includes dicing an image sensor wafer, aligning the pixel array of each image sensor with the transparent region of a respective optics component with interposer, and bonding each image sensor to its respective optics component with interposer. Each interposer provides alignment between its respective optics component center and its respective pixel array center of the image sensor based on the respective transparent region. The interposer further provides a back focal length for focusing light from the optics component onto a top surface of the pixel array.
Abstract:
A chip-scale packaging process for wafer-level camera manufacture includes aligning an optics component wafer with an interposer wafer having a photoresist pattern that forms a plurality of transparent regions, bonding the aligned optics component wafer to the interposer wafer, and dicing the bonded optics component wafer and interposer wafer such that each optics component with interposer has a transparent region. The process further includes dicing an image sensor wafer, aligning the pixel array of each image sensor with the transparent region of a respective optics component with interposer, and bonding each image sensor to its respective optics component with interposer. Each interposer provides alignment between its respective optics component center and its respective pixel array center of the image sensor based on the respective transparent region. The interposer further provides a back focal length for focusing light from the optics component onto a top surface of the pixel array.
Abstract:
A notched-spacer camera module includes a chip-scale package, a lens plate, a spacer ring, and a glue ring. The chip-scale package has an image sensor and a top surface. The spacer ring includes a glue gate having a gate height and a spacer base, having a base height, between the glue gate and the lens plate. The glue ring is between the spacer ring and the top surface and has (i) an outer region between the top surface and a bottom surface of the spacer base, and (ii) an inner region, having an inner thickness, between the top surface and a bottom surface of the glue gate. The lens plate, the spacer ring, the glue ring, and the top surface form a sealed cavity having a cavity height equal to at least a sum of the inner thickness, the gate height, and the base height.
Abstract:
A method for black coating camera cubes at wafer level includes expanding the gap between individual diced camera cubes of the wafer by stretching tape securing the diced camera cubes. The method includes applying a black coating layer to the stretched camera cubes, laser trimming undesired portions of the black coating layer, and removing the undesired portions of the black coating layer.