Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
A method of estimating a real-ear-to-coupler-difference (RECD) in a hearing is provided. The hearing aid comprises an input transducer; an output transducer; and an ITE-part configured to define a residual volume when mounted in an ear canal of a user. The method comprises providing an earpiece configured to fit tightly to walls of an ear canal of the user and to provide said residual volume; that the earpiece comprises at least one ventilation channel or opening; a sound outlet allowing sound from said output transducer to be played into said residual volume; characteristics of the at least one ventilation channel or opening; a frequency dependent feedback path estimate from said output transducer to said input transducer through said ventilation channel or opening; and estimating a low-frequency and high frequency RECD values in dependence said feedback path estimate; and determining estimated frequency dependent RECD values in dependence of said estimated low-frequency RECD value, and said estimated high-frequency RECD value.
Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
A hearing device configured to be worn in an ear canal, wherein the hearing device comprises a housing, a receiver, one or more microphones and a battery. The receiver is arranged in the housing in a manner in which the receiver at least partly extends outside of the housing, and a sealing element is configured to be arranged in the bony region of the ear canal.
Abstract:
The application relates to a hearing device configured to be placed in the ear canal of a user, the hearing device comprising a forward path adapted for processing an input sound and providing an output sound representative of the input sound, the hearing device comprising an assembly comprising first and second modules adapted for being in mechanical contact with each other when the hearing device is operationally assembled to form a functional unit. The object of the present application is to provide a user friendly hearing device adapted for being located in an ear canal of the user. The problem is solved in that the first module comprises a power supply unit, and the second module comprises an input unit, a signal processing unit and an output unit in operational connection, wherein the first and second modules are configured to provide that the first and second modules are reversibly attachable to and detachable from each other; and the first and second modules are electrically connected to provide that units of the second module are energized by the battery of the first module, when the first and second modules are operationally assembled. This has the advantage of providing relatively simple and easy to use hearing device. The invention may e.g. be used for hearing aids, in particular extended wear hearing aids adapted for being located deep in the ear canal of a user.
Abstract:
The invention describes a hearing device with a BTE (Behind-The-Ear) unit and an air filled tube. The BTE unit comprises a power source, a microphone, an amplifier, and a receiver and is configured to be mounted behind or on the ear of a user. The air filled tube as a proximal end and a distal end. The proximal end of the air filled tube is connected to the receiver of the BTE unit and a flexible sealing part is provided at the distal end. The flexible sealing part comprises a core hole permeable for sound transmitted from the air filled tube through a core pathway. The air filled tube is further configured to be arranged in a user's ear canal to transmit sound generated by the BTE unit to a tympanic membrane of the user. The flexible sealing part is arranged in a bony portion of the user's ear canal when in use. The diameter of the flexible sealing part is at least as large as the diameter of the bony portion of the ear canal of a user to close the ear canal.
Abstract:
A listening device processes an electric input sound signal and provides an output stimulus perceivable to a wearer of the listening device as sound, the listening device comprising a signal processing unit for processing an information signal originating from the electric input sound signal and to provide a processed output signal forming the basis for generating said output stimulus. A perception unit establishes a perception measure indicative of the wearer's present ability to perceive said information signal. A signal interface communicates the perception measure to another person or device.
Abstract:
A hearing device, e.g. a hearing aid, comprises a) an input unit comprising a multitude of input transducers for providing respective electric input signals representing sound in an environment of the user; b) an output unit comprising an output transducer for providing stimuli perceivable to the user as sound based on said electric input signals or a processed version thereof; c) first and second spatial filters each connected to said input unit and configured to provide respective first and second spatially filtered signals based on said multitude of electric input signals and configurable beamformer weights. The first spatial filter implements at a given time, a feedback cancelling beamformer, or a target maintaining, noise cancelling, beamformer directed at said environment of the user. The second spatial filter implements at a given time, a feedback cancelling beamformer, or an own voice beamformer directed at the mouth of the user.
Abstract:
A hearing device, e.g. a hearing aid, comprises a) an input unit comprising a multitude of input transducers for providing respective electric input signals representing sound in an environment of the user; b) an output unit comprising an output transducer for providing stimuli perceivable to the user as sound based on said electric input signals or a processed version thereof; c) a spatial filter connected to said input unit and to said output unit, and configured to provide a spatially filtered signal based on said multitude of electric input signals and configurable beamformer weights; d) a spatial filter controller configured to apply first and/or second different sets of beamformer weights to said multitude of electric input signals, wherein said first set of beamformer weights is applied to provide spatial filtering of sound from said output transducer, and wherein said second set of beamformer weights is applied to provide spatial filtering of an external sound field. A method of operating a hearing device is further disclosed.
Abstract:
A hearing device comprising a first and a second input sound transducers, a processing unit, and an output sound transducer. The first transducer is configured to be arranged in an ear canal or in the ear of the user, to receive acoustical sound signals from the environment and to generate first electrical acoustic signals from the received acoustical sound signals. The second transducer is configured to be arranged behind a pinna or on, behind or at the ear of the user, to receive acoustical sound signals from the environment and to generate second electrical acoustic signals from the received acoustical sound signals. The processing unit is configured to process the first and second electrical acoustic signals and apply a direction dependent gain. The output sound transducer is configured generate acoustical output sound signals in accordance with the applied direction dependent gain.