Abstract:
According to an embodiment, a hearing aid comprising a custom-fit ear mold is disclosed. The custom fit ear mold includes a retention part comprising a structure adapted to lock anatomically with at least one point at a surface of the pinna and/or ear canal when the custom-fit earmold is positioned in the pinna and/or ear canal of the user. The at least one point represents at least one retention point selected from the plurality of retention possibility points (RPPs), wherein each RPP of the plurality of the RPPs comprises a point wherein a normal, at the RPP, to a tangent plane containing the RPP intersects at another point at surface of the pinna and/or ear canal such that the another point is proximal to a tympanic membrane of the user compared to position of the RPP relative to the tympanic membrane.
Abstract:
The invention describes a hearing device with a BTE (Behind-The-Ear) unit and an air filled tube. The BTE unit comprises a power source, a microphone, an amplifier, and a receiver and is configured to be mounted behind or on the ear of a user. The air filled tube as a proximal end and a distal end. The proximal end of the air filled tube is connected to the receiver of the BTE unit and a flexible sealing part is provided at the distal end. The flexible sealing part comprises a core hole permeable for sound transmitted from the air filled tube through a core pathway. The air filled tube is further configured to be arranged in a user's ear canal to transmit sound generated by the BTE unit to a tympanic membrane of the user. The flexible sealing part is arranged in a bony portion of the user's ear canal when in use. The diameter of the flexible sealing part is at least as large as the diameter of the bony portion of the ear canal of a user to close the ear canal.
Abstract:
A method for producing a custom-fit hearing device is disclosed. The method for producing a custom-fit hearing device comprises the step of scanning the hearing aid user's ear(s). The method comprises the step of scanning the outer ear of at least one of the user's ears and/or at least a region of the skull bone of the hearing aid user and providing data obtained during scans.
Abstract:
An apparatus for determining cochlear dead region comprising a sound generation unit, an output transducer, and a control unit. The control unit causes the sound generation unit to provide a first electrical sound signal representing a first frequency band adjacent to a frequency region of interest, with a first bandwidth, a first sound pressure level and a first subsequent electrical sound signal representing a first subsequent frequency band comprising the frequency region of interest with a first subsequent bandwidth, a first subsequent sound pressure level, and a first subsequent time delay to the first electrical sound signal. In response, the output transducer generates a first output sound and a first subsequent output sound with the first subsequent time delay. A user compares the first output and first subsequent output sounds and decides, whether he hears a difference between the two sounds and gives a positive or negative decision input.
Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
A method of estimating a real-ear-to-coupler-difference (RECD) in a hearing is provided. The hearing aid comprises an input transducer; an output transducer; and an ITE-part configured to define a residual volume when mounted in an ear canal of a user. The method comprises providing an earpiece configured to fit tightly to walls of an ear canal of the user and to provide said residual volume; that the earpiece comprises at least one ventilation channel or opening; a sound outlet allowing sound from said output transducer to be played into said residual volume; characteristics of the at least one ventilation channel or opening; a frequency dependent feedback path estimate from said output transducer to said input transducer through said ventilation channel or opening; and estimating a low-frequency and high frequency RECD values in dependence said feedback path estimate; and determining estimated frequency dependent RECD values in dependence of said estimated low-frequency RECD value, and said estimated high-frequency RECD value.
Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
A hearing device configured to be worn in an ear canal, wherein the hearing device comprises a housing, a receiver, one or more microphones and a battery. The receiver is arranged in the housing in a manner in which the receiver at least partly extends outside of the housing, and a sealing element is configured to be arranged in the bony region of the ear canal.
Abstract:
The application relates to a hearing device configured to be placed in the ear canal of a user, the hearing device comprising a forward path adapted for processing an input sound and providing an output sound representative of the input sound, the hearing device comprising an assembly comprising first and second modules adapted for being in mechanical contact with each other when the hearing device is operationally assembled to form a functional unit. The object of the present application is to provide a user friendly hearing device adapted for being located in an ear canal of the user. The problem is solved in that the first module comprises a power supply unit, and the second module comprises an input unit, a signal processing unit and an output unit in operational connection, wherein the first and second modules are configured to provide that the first and second modules are reversibly attachable to and detachable from each other; and the first and second modules are electrically connected to provide that units of the second module are energized by the battery of the first module, when the first and second modules are operationally assembled. This has the advantage of providing relatively simple and easy to use hearing device. The invention may e.g. be used for hearing aids, in particular extended wear hearing aids adapted for being located deep in the ear canal of a user.
Abstract:
A listening device processes an electric input sound signal and provides an output stimulus perceivable to a wearer of the listening device as sound, the listening device comprising a signal processing unit for processing an information signal originating from the electric input sound signal and to provide a processed output signal forming the basis for generating said output stimulus. A perception unit establishes a perception measure indicative of the wearer's present ability to perceive said information signal. A signal interface communicates the perception measure to another person or device.