Abstract:
A contact member or a slide member of the present invention comprises a surface treatment film (160) including two or more coating layers stacked together, in at least a portion of a contact surface or a slide surface thereof, wherein each of the coating layers includes synthetic resin and a solid lubricant, and wherein the solid lubricant (162) of the coating layer located at an innermost side is lower in content percentage than the solid lubricant of the coating layer located at an outermost side. A contact member or a slide member of the present invention comprises a surface treatment film (160) including two or more coating layers stacked together, in at least a portion of a contact surface or a slide surface thereof, each of the coating layers includes synthetic resin, and the coating layer located at an innermost side is larger in elastic deformation amount than the coating layer located at an outermost side.
Abstract:
A slide member of the present invention is used in a slide unit which is included in a refrigerant compressor for compressing a refrigerant and provided inside a sealed container which reserves lubricating oil therein. The slide member is provided with an oxide coating film on a surface of a base material. The oxide coating film is configured such that (1) when the base material comprises an iron based material, the oxide coating film has a three-layer structure including a first layer comprising Fe2O3, a second layer comprising Fe3O4, and a third layer comprising FeO in this order from an outermost surface, (2) the oxide coating film has a dense structure having minute concave/convex portions with a height difference which falls within a range of 0.01 μm to 0.1 μm, or (3) when the base material comprises the iron based material, the oxide coating film has a three-layer structure in which the three layers comprise the iron oxides and are different in hardness.
Abstract translation:本发明的滑动构件用于包含在用于压缩制冷剂的制冷剂压缩机中并设置在其内保留润滑油的密封容器内的滑动单元中。 滑动构件在基材的表面上设置有氧化物涂膜。 氧化物涂膜被构造成使得(1)当基材包含铁基材料时,氧化物涂膜具有三层结构,其包括包含Fe 2 O 3的第一层,包含Fe 3 O 4的第二层和包含FeO 4的第三层 (2)氧化皮膜具有致密结构,其具有微小的凹凸部,其高度差在0.01μm〜0.1μm的范围内,或(3)当基材包含 铁基材料,氧化物涂膜具有三层结构,其中三层包含氧化铁并且硬度不同。
Abstract:
A hermetic compressor includes a closed vessel for storing lubricating oil, an electric-driving element, and a compressing element driven by the electric-driving element. The compressing element includes a cylinder block forming a compression chamber, a piton that reciprocates inside the compression chamber, and an oiling device for supplying the lubricating oil to an outer circumference of the piston. A first oil groove is concavely formed on the outer circumference of the piston, and a second oil groove is concavely formed on a side opposite to the compression chamber relative to the first oil groove. The second oil groove has a spatial volume same or greater than that of the first oil groove. An expanded clearance portion is provided such that a clearance between the piston and the cylindrical hole portion broadens from a top dead point to a bottom dead point.
Abstract:
A hermetic compressor includes a closed vessel for storing lubricating oil, an electric-driving element, and a compressing element driven by the electric-driving element. The compressing element includes a cylinder block forming a compression chamber, a piton that reciprocates inside the compression chamber, and an oiling device for supplying the lubricating oil to an outer circumference of the piston. A first oil groove is concavely formed on the outer circumference of the piston, and a second oil groove is concavely formed on a side opposite to the compression chamber relative to the first oil groove. The second oil groove has a spatial volume same or greater than that of the first oil groove. An expanded clearance portion is provided such that a clearance between the piston and the cylindrical hole portion broadens from a top dead point to a bottom dead point.
Abstract:
A hermetic compressor (100) includes an electric element (110), a compression element (112), and a hermetic container (102). The compression element includes a shaft (118), a cylinder block (124), a piston (136), a connection section (144), and an oil supply mechanism (130). The piston has a columnar seal section (160) in sliding contact with an inner peripheral face of the cylinder, two extension sections (162) that have circular arc faces each having the same radius as a radius of the seal section and extend from the seal section to the bottom dead center side in the axial direction with a circumferential gap therebetween, and a columnar capture section (164) that extends further toward the bottom dead center side than the extension section and has a smaller radius than the radius of the seal section.