Abstract:
An exemplary imaging device according to the present disclosure includes: an imaging region including a plurality of pixels; a peripheral region located outside of the imaging region; and a blockade region located between the imaging region and the peripheral region. Each of the plurality of pixels includes a photoelectric conversion layer, a pixel electrode to collect a charge generated in the photoelectric conversion layer, and a first doped region electrically connected to the pixel electrode. In the peripheral region, a circuit to drive the plurality of pixels is provided. The blockade region includes a second doped region of a first conductivity type located between the imaging region and the peripheral region and a plurality of first contact plugs connected to the second doped region.
Abstract:
An interconnect structure includes: an interconnect layer containing a metal element as a main component and extending in a direction; a metal layer opposite to the interconnect layer, and a solid electrolyte layer between the interconnect layer and the metal layer. The solid electrolyte layer encloses the interconnect layer at least in a cross-sectional view taken along a plane orthogonal to the direction. The interconnect layer and the metal layer are electrically insulated from each other by the solid electrolyte layer.
Abstract:
An exemplary imaging device according to the present disclosure includes: an imaging region including a plurality of pixels; a peripheral region located outside of the imaging region; and a blockade region located between the imaging region and the peripheral region. Each of the plurality of pixels includes a photoelectric conversion layer, a pixel electrode to collect a charge generated in the photoelectric conversion layer, and a first doped region electrically connected to the pixel electrode. In the peripheral region, a circuit to drive the plurality of pixels is provided. The blockade region includes a second doped region of a first conductivity type located between the imaging region and the peripheral region and a plurality of first contact plugs connected to the second doped region.
Abstract:
An imaging device includes: a semiconductor substrate including a first impurity region and a second impurity region; a first insulating layer on a portion of a surface of the semiconductor substrate; a second insulating layer on another portion of the surface of the semiconductor substrate, a thickness of the first insulating layer being greater than a thickness of the second insulating layer; a first transistor including: a first gate electrode facing the surface of the semiconductor substrate via the first insulating layer; the first impurity region as one of a source and a drain; and the second impurity region as the other of the source and the drain; and a photoelectric converter electrically connected to the first impurity region. The first insulating layer covers the first impurity region, and the second insulating layer covers the second impurity region.
Abstract:
A solid electrolyte includes an oxynitride that contains an alkaline-earth metal, phosphorus, oxygen, and nitrogen. A P2p spectrum obtained by an X-ray photoelectron spectroscopy measurement of the oxynitride contains a peak component originating from a P—N bond.
Abstract:
An exemplary imaging device according to the present disclosure includes: an imaging region including a plurality of pixels; a peripheral region located outside of the imaging region; and a blockade region located between the imaging region and the peripheral region Each of the plurality of pixels includes a photoelectric conversion layer, a pixel electrode to collect a charge generated in the photoelectric conversion layer, and a first doped region electrically connected to the pixel electrode. In the peripheral region, a circuit to drive the plurality of pixels is provided. The blockade region includes a second doped region of a first conductivity type located between the imaging region and the peripheral region and a plurality of first contact plugs connected to the second doped region.
Abstract:
An interconnect structure according to the present disclosure includes: an interconnect layer containing a metal element as a main component and extending in a direction; a metal layer opposite to the interconnect layer, and a solid electrolyte layer between the interconnect layer and the metal layer. The solid electrolyte layer encloses the interconnect layer at least in a cross-sectional view taken along a plane orthogonal to the direction. The interconnect layer and the metal layer are electrically insulated from each other by the solid electrolyte layer.
Abstract:
In an embodiment, photoelectric conversion units (10) each include a package (12) accommodating a photoelectric conversion device (11). The package (12) has a front surface (12a) having a window (13); and a side surface (12c). The package (12) includes a first coupling portion (14) protruding from the side surface (12c) in a first direction X parallel to a light incident surface (11a) of the photoelectric conversion device (11), and a second coupling portion (15) recessed from the side surface (12c) in the first direction X. The first coupling portion (14) includes a first terminal (16) electrically connected with the photoelectric conversion device (11), and the second coupling portion (15) includes a second terminal (17) electrically connected with the photoelectric conversion device (11). The first coupling portion (14) and the second coupling portion (15) have shapes and sizes matching each other, and are coupled with each other by fitting.