Abstract:
Provided a sound velocity correction device including an environmental parameter obtainer that acquires a measured value of a surrounding environmental parameter of a sound collector that collects a sound emitted from a sound source; and a sound velocity corrector that corrects a sound velocity of the sound which is used to form directivity in a directing direction toward the sound source from the sound collector, using the measured value of the surrounding environmental parameter of the sound collector which is acquired by the environmental parameter obtainer.
Abstract:
An audio processing system, includes: an audio collector that collects audio in a non-directivity state using audio collection elements; an operator receives an input of one or more designation directions for audio emphasis for switching from the non-directivity state to a directivity state; an emphasis processor that generates audio data in the directivity state obtained by performing an emphasis process on the audio data in the designation direction from the audio collector using audio data collected by the audio collector according to the input of the designation direction; a volume adjustor that adjusts volume of the audio data in a directivity state; and an audio output that outputs the audio in a non-directivity state collected by the audio collector or the audio in a directivity state after the volume has been adjusted by the volume adjustor.
Abstract:
A sound and video processing system includes: a display, having a rectangular display region, that displays a video image in a circular video-image display region smaller than the rectangular display region; and a sound collector that collects sound. A processor generates emphasized audio data, in which sound is emphasized in at least one direction from a position of the sound collector toward at least one position corresponding to at least one designated location in the video image. In response to receiving designation outside the video-image display region, the processor displays a state display area or an adjustment operation area for the sound to be output from the speaker in a rectangular region which has a diagonal line extending from one of four corners of the rectangular display region to a center of the video-image display region and intersecting with a boundary line of the video-image display region.
Abstract:
Sound collection directionality is formed toward a location corresponding to a position designated in a video of a predetermined region which is imaged by a camera apparatus with a microphone array apparatus as a reference, and audio data is collected with high accuracy. In a directionality control system (10), a signal processing unit (33) derives a sound collection direction (θMAh,θMAv) which is directed from an installation position of a microphone array apparatus (2) toward a sound position corresponding to a position designated in video data on a screen of the display device (36) in response to a user's designation of any position in the video data displayed on the screen. The signal processing unit (33) forms sound collection directionality of audio data in the derived sound collection direction (θMAh,θMAv).
Abstract:
A failure detection system includes an omnidirectional microphone array device having a plurality of microphone elements and a directivity control device that calculates a delay time of a voice propagated from a sound source to each microphone element and forms a directivity of the voice using the delay time and the voice collected by the omnidirectional microphone array device, and detects a failure of the microphone element. A smoothing unit calculates an average power of one microphone element. An average calculator calculates a total average power of a plurality of usable microphone elements included in the omnidirectional microphone array device. A comparison unit compares whether or not a difference between the average power and the total average power exceeds a range of ±6 dB, and determines whether the microphone element is in failure based on the comparison result.
Abstract:
A camera and a microphone array configuring a monitoring system are capable of receiving electric power from a PoE apparatus through a LAN cable. In a case where a first switching operation is performed on a microphone array side, an output terminal of an input switch is connected to an input terminal of a PoE electric power reception circuit side. An input terminal of an output switch is connected to an output terminal of a PoE electric power transmission circuit side. On a camera side, an output terminal of the input switch is connected to an input terminal of a PoE electric power receptor side. The microphone array receives electric power that is supplied from the PoE apparatus for operation and transmits the electric power towards the camera. The camera receives the supplied electric power from the PoE apparatus through the microphone array and the LAN cable for operation.
Abstract:
A microphone array system includes a camera that images a picture for a target place, a microphone array that picks up sound using a plurality of microphones, a sound source analyzer that calculates a sound source position based on picked up sound data, an image displaying processor that displays image data, which includes sound source position display indicative of an imaged target place picture and the sound source position on the display, a user-input apparatus that receives an instruction of a specified spot in the target place picture displayed on the display, a directivity calculator that forms sound directivity in a direction which faces the specified spot from the microphone array based on the picked up sound data, and generates the sound data acquired by emphasizing sound in a direction having the directivity, and a sound outputter that outputs the sound data to the speaker and reproduces the sound data.
Abstract:
A recorder receives designation of a video which is desired to be reproduced from a user. If designation of one or more designated locations where sound is emphasized on a screen of a display which displays the video is received by the recorder from the user via an operation unit during reproduction or temporary stopping of the video, a signal processing unit performs an emphasis process on audio data, that is, the signal processing unit emphasizes audio data in directions directed toward positions corresponding to the designated locations from a microphone array by using audio data recorded in the recorder. A reproducing device reproduces the emphasis-processed audio data and video data in synchronization with each other.
Abstract:
A directivity control apparatus controls a directivity of a sound collected by a sound collecting unit including a plurality of microphones. A beam forming unit forms a beam in a direction from the sound collecting unit toward a sound source corresponding to a position designated in an image on a display unit. A magnification setting unit sets a magnification for magnifying or demagnifying the image in the display according to an input. The beam forming unit also changes a size of the formed beam in accordance with the magnification set by the magnification setting unit.
Abstract:
A sound and video processing system includes: a display that displays a video image captured by the camera; a sound collector that collects sound; an input device that receives designation of at least one designated location in the video image displayed on the display. A processor generates emphasized audio data, in which sound is emphasized in at least one direction from a position of the sound collector toward at least one position corresponding to the at least one designated location. The processor displays at least one identification shape at the at least one designated location. In response to receiving re-designation of one of the at least one designated location by the input device, the processor outputs audio data in which emphasis of sound stops in a direction from the position of the sound collector toward the position corresponding to the re-designated location.