摘要:
A mechanism for diagnosing broken scan chains based on leakage light emission is provided. An image capture mechanism detects light emission from leakage current in complementary metal oxide semiconductor (CMOS) devices. The diagnosis mechanism identifies devices with unexpected light emission. An unexpected amount of light emission may indicate that a transistor is turned off when it should be turned on or vice versa. All possible inputs may be tested to determine whether a problem exists with transistors in latches or with transistors in clock buffers. Broken points in the scan chain may then be determined based on the locations of unexpected light emission.
摘要:
A mechanism for diagnosing broken scan chains based on leakage light emission is provided. An image capture mechanism detects light emission from leakage current in complementary metal oxide semiconductor (CMOS) devices. The diagnosis mechanism identifies devices with unexpected light emission. An unexpected amount of light emission may indicate that a transistor is turned off when it should be turned on or vice versa. All possible inputs may be tested to determine whether a problem exists with transistors in latches or with transistors in clock buffers. Broken points in the scan chain may then be determined based on the locations of unexpected light emission.
摘要:
A mechanism for diagnosing broken scan chains based on leakage light emission is provided. An image capture mechanism detects light emission from leakage current in complementary metal oxide semiconductor (CMOS) devices. The diagnosis mechanism identifies devices with unexpected light emission. An unexpected amount of light emission may indicate that a transistor is turned off when it should be turned on or vice versa. All possible inputs may be tested to determine whether a problem exists with transistors in latches or with transistors in clock buffers. Broken points in the scan chain may then be determined based on the locations of unexpected light emission.
摘要:
Disclosed are a method and system for analyzing leakage current luminescence in CMOS circuits. The method comprises the steps of collecting light emission data from each of a plurality of CMOS circuits, and separating the CMOS circuits into first and second groups. For the first group of CMOS circuits, the emission data from the CMOS circuits are analyzed, based on the presence or absence of leakage light from the CMOS circuits, to identify logic states for the CMOS circuits. For the second group of CMOS circuits, the emission data from the CMOS circuits are analyzed, based on modulation of the intensity of the light from the CMOS circuits, to determine values for given parameters of the circuits. These parameters may be, for example, temperature, cross-talk or power distribution noise.