Abstract:
There is provided a capacitive touch device including a touch panel, a detection circuit and a processing unit. The touch panel includes a plurality of drive electrodes and a plurality of receiving electrodes configured to form a coupling electric field with an external touch panel, and the receiving electrodes are respectively configured to output a detection signal. The detection circuit is coupled to one of the receiving electrodes and configured to modulate the detection signal with two signals to generate two detection components. The processing unit is configured to obtain a phase value according to the two detection components to accordingly decode transmission data.
Abstract:
A capacitive touch system including a drive end, a capacitive sensing matrix and a detection end is provided. The drive end concurrently inputs encoded and modulated drive signals into a plurality of channels of the capacitive sensing matrix within each drive time slot of a frame. The detection end detects a detection matrix of the channels in the frame and decodes the detection matrix to respectively generate a two-dimensional detection vector corresponding to each of the channels. The detection end further calculates a subtraction between components of the two-dimensional detection vectors associated with two receiving electrodes of the capacitive sensing matrix to eliminate interference from noises.
Abstract:
There is provided a capacitive touch system including a gain control unit sequentially receiving a plurality of digital detected signals of a detection frame. The gain control unit includes a gain buffer and a control circuit. The gain buffer is configured to store a current gain sheet. The control circuit calculates a first gain sheet according to a setpoint and the digital detected signals of the detection frame, compares a current roughness of the current gain sheet with a first roughness of the first gain sheet and replaces the current gain sheet in the gain buffer by the first gain sheet when the first roughness is flatter than the current roughness.
Abstract:
There is provided an operating method of a capacitive finger navigation device including the steps of: calculating a touch coordinate according to a predetermined position coordinate and associated detected variation of each of a plurality of detecting cells when the associated detected variations of the detecting cells exceed a threshold; mapping the touch coordinate to a touch position associated with a touch surface; entering a relative motion mode when the touch position is in a first area; and entering an absolute coordinate mode when the touch position is in a second area.
Abstract:
The present disclosure is related to an optical encoder which is configured to provide precise coding reference data by feature recognition technology. To apply the present disclosure, it is not necessary to provide particular dense patterns on a working surface or any reference object with particular markers. The precise coding reference data can be generated by detecting surface features of the working surface.
Abstract:
A distance measurement system and method are provided. The distance measurement method first projects a light beam with a speckle pattern to reference planes and an object to allow the reference planes and a surface of the object each have an image of the speckle pattern, the speckle pattern having a plurality of speckles. Next, images of the speckle pattern reflected by the reference planes are captured to generate reference image information, and an image of the speckle pattern reflected by the surface of the object is captured to generate an object image information. A processing module which may be a processing software can compare the object image information with the reference image information to obtain several similarity scores. If the most the most similarity score is greater than a threshold value, the processing module identifies the corresponding reference plane, thereby computing the position of the object.
Abstract:
An optical encoder has a displacement generating unit, a light-emitting unit and an optical navigation integrated circuit. The displacement generating unit has an axle body movable along a central axial line thereof. The axle body has a free end with a diameter larger than a part of the axle body and a planar working surface formed on the free end. The light-emitting unit is configured for operatively providing a light beam to irradiate the working surface of the displacement generating unit. The light beam has a divergence angle within a range to reduce scattering. The optical navigation integrated circuit receives the reflected light beam reflected by the working surface, and calculates a relative displacement between the optical navigation integrated circuit and the working surface.
Abstract:
There is provided a mobile carrier and an auto following system using the mobile carrier. The mobile carrier is capable of capturing at least an image of a guiding light source and automatically following the guiding light source based on the captured image of the guiding light source. The mobile carrier is further disposed with a mobile light source for a remote image sensing device to capture an image of the mobile light source while the mobile carrier cannot capture the image of the guiding light source, so that the mobile carrier can be guided by a control signal provided according to the captured image of the mobile light source.
Abstract:
A storage media provided by the present invention, has a non-transitory processing software for computing a position of an object in a distance measurement system, the execution of the processing software comprising: receiving a plurality of reference image information contained in an image with a speckle pattern, wherein the image is projected from a light beam on a plurality of reference flat surfaces which are located on different position points, and the speckle contains a plurality of speckles; receiving an object image information contained in an image with the speckle pattern which is projected from the light beam on an object; obtaining a plurality of comparison results through comparing the plurality of reference image information with the object image information; and computing the position of the object through performing an interpolation operation to the plurality of comparison results.
Abstract:
The present disclosure is related to an optical encoder which is configured to provide precise coding reference data by feature recognition technology. To apply the present disclosure, it is not necessary to provide particular dense patterns on a working surface. The precise coding reference data can be generated by detecting surface features of the working surface.