Abstract:
The present disclosure relates to methods and systems for concentrating a solids stream recovered from one or more process streams derived from a beer in a biorefinery by exposing the recovered solids stream to an evaporator system to remove moisture therefrom and form a concentrated, recovered solids stream.
Abstract:
Provided are methods and systems of propagating a microorganism on a stillage composition. The methods involve growing microorganisms in a propagation medium formed from a polysaccharide-containing stillage composition with the majority of the of the polysaccharides in the propagation medium coming from the stillage composition. The propagation medium also includes cellulases and/or amylases to form monosaccharides from the polysaccharides. A first cell mass is grown in the propagation medium to form a second cell mass which is greater than the first cell mass.
Abstract:
The present disclosure includes systems and methods for hydrolyzing (e.g., pretreatment and/or enzymatic hydrolysis) lignocellulosic biomass into one or more sugars such as pentose and glucose sugars. The present disclosure includes configurations that incorporate flashing and/or liquid cooling so as to permit desirable throughput. The present disclosure also includes a liquefaction configuration so as to permit desirable (e.g., continuous high volume) throughput.
Abstract:
The present disclosure includes embodiments of methods and systems for reducing the size of lignocellulosic feedstock. The present disclosure also includes embodiments of methods and systems for separating oversized, in process lignocellulosic material, reducing the size of the oversized lignocellulosic material offline, and the reintroducing the lignocellulosic material back into the main process flow after size reduction.
Abstract:
The present disclosure relates to methods and systems for concentrating a solids stream recovered from one or more process streams derived from a beer in a biorefinery by exposing the recovered solids stream to an evaporator system to remove moisture therefrom and form a concentrated, recovered solids stream.
Abstract:
The present disclosure relates to methods and systems for regenerating molecular sieves used in an alcohol dehydration process after the molecular sieves have become saturated with water.
Abstract:
The present disclosure includes embodiments of methods and systems for reducing the size of lignocellulosic feedstock. The present disclosure also includes embodiments of methods and systems for separating oversized, in process lignocellulosic material, reducing the size of the oversized lignocellulosic material offline, and the reintroducing the lignocellulosic material back into the main process flow after size reduction.
Abstract:
The present disclosure relates to methods and systems for concentrating a solids stream recovered from one or more process streams derived from a beer in a biorefinery by exposing the recovered solids stream to an evaporator system to remove moisture therefrom and form a concentrated, recovered solids stream.
Abstract:
The present disclosure includes systems and methods for hydrolyzing (e.g., pretreatment and/or enzymatic hydrolysis) lignocellulosic biomass into one or more sugars such as pentose and glucose sugars. The present disclosure includes configurations that incorporate flashing and/or liquid cooling so as to permit desirable throughput. The present disclosure also includes a liquefaction configuration so as to permit desirable (e.g., continuous high volume) throughput.
Abstract:
Provided are methods and systems of propagating a microorganism on a stillage composition. The methods involve growing microorganisms in a propagation medium formed from a polysaccharide-containing stillage composition with the majority of the of the polysaccharides in the propagation medium coming from the stillage composition. The propagation medium also includes cellulases and/or amylases to form monosaccharides from the polysaccharides. A first cell mass is grown in the propagation medium to form a second cell mass which is greater than the first cell mass.