Abstract:
The present invention relates to a battery comprising a crosslinked intumescent layer selected from a coating and a self-supported film or sheet the layer being formed from a curable intumescent composition comprising: (a) a resin component comprising one or more oligomeric or polymeric compounds having a plurality of functional groups; (b) optionally a curing agent having a plurality of functional groups that are reactive with the functional groups of the oligomeric or polymeric compound of resin component (a); and (c) a compound providing an expansion gas upon thermal decomposition; wherein compounds (a) to (c) differ from each other, to an article comprising a battery, wherein the crosslinked intumescent layer is applied to a part of the article adjacent to the battery between the battery and the article, to methods to provide fire protection to a battery or an article comprising a battery or to reduce or prevent thermal runaway of a battery.
Abstract:
The present invention provides a slurry composition comprising an electrochemically active material and/or an electrically conductive agent, and a binder comprising a polymer comprising a fluoropolymer dispersed in an organic medium; wherein the organic medium has an evaporation rate less than 10 g/min m2, at the dissolution temperature of the fluoropolymer dispersed in the organic medium. The present invention also provides electrodes and electrical storage devices.
Abstract:
The present invention is directed towards a method of coating a substrate comprising electrocoating an electrodepositable coating composition onto the substrate, the electrodepositable coating composition comprising a binder comprising a pH-dependent rheology modifier; an electrochemically active material and/or an electrically conductive agent; and an aqueous medium. Also disclosed are electrodepositable coating compositions, coated substrates and electrical storage devices.
Abstract:
The present invention is directed towards an electrodepositable coating composition comprising an electrochemically active material comprising a protective coating; an electrodepositable binder; and an aqueous medium. Also disclosed herein is a method of coating a substrate, as well as coated substrates and electrical storage devices.
Abstract:
Methods are disclosed in which an electrically conductive substrate is immersed in electrodepositable composition including graphenic carbon particles, the substrate serving as an electrode in an electrical circuit comprising the electrode and a counter-electrode immersed in the composition, a coating being applied onto or over at least a portion of the substrate as electric current is passed between the electrodes. The electrodepositable composition comprises an aqueous medium, an ionic resin, and solid particles including graphenic carbon particles. The solid particles may also include lithium-containing particles.
Abstract:
A method of producing an electrode for a lithium ion battery is disclosed in which an electrically conductive substrate is immersed into an electrodepositable composition, the substrate serving as the electrode in an electrical circuit comprising the electrode and a counter-electrode immersed in the composition, a coating being applied onto or over at least a portion of the substrate as electric current is passed between the electrodes. The electrodepositable composition comprises: (a) an aqueous medium; (b) an ionic (meth)acrylic polymer; and (c) solid particles comprising: (i) lithium-containing particles, and (ii) electrically conductive particles, wherein the composition has a weight ratio of solid particles to ionic (meth)acrylic polymer of at least 4:1.
Abstract:
A method of producing an electrode for a lithium ion battery is disclosed in which an electrically conductive substrate is immersed into an electrodepositable composition, the substrate serving as the electrode in an electrical circuit comprising the electrode and a counter-electrode immersed in the composition, a coating being applied onto or over at least a portion of the substrate as electric current is passed between the electrodes. The electrodepositable composition comprises: (a) an aqueous medium; (b) an ionic (meth)acrylic polymer; and (c) solid particles comprising: (i) lithium-containing particles, and (ii) electrically conductive particles, wherein the composition has a weight ratio of solid particles to ionic (meth)acrylic polymer of at least 4:1.
Abstract:
The present invention provides for a composition comprising a pigment, wherein the composition is suitable for coating a surface that is, or is expected to be, exposed to the sun. The pigment comprises particles that fluoresce in sunlight, thereby remaining cooler in the sun than coatings pigmented with non-fluorescent particles. The particles comprise solids that fluoresce or glow in the visible or near infrared (NIR) spectra, or that fluoresce when doped. Suitable dopants include, but are not limited to, ions of rare earths and transition metals. A coating composition includes: (i) a film-forming resin; (ii) an infrared reflective pigment; and (iii) an infrared fluorescent pigment different from the infrared reflective pigment. When the coating composition is cured to form a coating and exposed to radiation comprising fluorescence-exciting radiation, the coating has a greater effective solar reflectance (ESR) compared to the same coating exposed to the radiation comprising fluorescence-exciting radiation except without the infrared fluorescent pigment. A multi-layer coating including the coating composition, and a substrate at least partially coated with the coating composition is also disclosed. A method of reducing temperature of an article includes applying the coating composition to at least a portion of the article.
Abstract:
Lithium ion battery electrodes including graphenic carbon particles are disclosed. Lithium ion batteries containing such electrodes are also disclosed. The graphenic carbon particles may be used in cathodes of such batteries by depositing a graphenic carbon particle-containing coating of a conductive substrate such as a metal foil The use of graphenic carbon particles in the cathodes results in improved performance of the lithium ion batteries.
Abstract:
An electrode binder of a lithium ion battery comprising: (a) a polyvinylidene binder dispersed in an organic diluent with (b) a (meth)acrylic polymer dispersant. The binder can be used in the assembly of electrodes of lithium ion batteries.