Abstract:
A method for generating hydrogen and making graphenic carbon particles is disclosed comprising introducing an inert carrier gas and a hydrocarbon precursor material comprising a material capable of forming a two-carbon-fragment species and/or methane into a thermal zone, heating the hydrocarbon precursor material in the thermal zone to decompose the hydrocarbon precursor material and form the hydrogen and the graphenic carbon particles, and contacting the gaseous stream with a quench stream. Graphenic carbon particles having an average aspect ratio greater than 3:1, a B.E.T. specific surface area of from 70 to 1000 square meters per gram, and a Raman spectroscopy 2D/G peak ratio of at least 1:1.
Abstract:
A float bath coating system includes at least one nanoparticle coater located in a float bath. The at least one nanoparticle coater includes a housing, a nanoparticle discharge slot, a first combustion slot, and a second combustion slot. The nanoparticle discharge slot is connected to a nanoparticle source and a carrier fluid source. The first combustion slot is connected to a fuel source and an oxidizer source. The second combustion slot is connected to a fuel source and an oxidizer source.
Abstract:
An article, for example a solar cell, includes a first substrate having a first surface and a second surface. An underlayer is located over the second surface. A first conductive layer is located over the underlayer. An overlayer is located over the first conductive layer. A semiconductor layer is located over the conductive oxide layer. A second conductive layer is located over the semiconductor layer. The first conductive layer can include a conductive oxide and at least one dopant selected from the group consisting of tungsten, molybdenum, niobium, and/or fluorine. The overlayer can include a buffer layer having tin oxide and at least one of zinc, indium, gallium, and magnesium.
Abstract:
A method is disclosed for making graphenic carbon particles. The method includes introducing a hydrocarbon precursor material into a thermal zone (20), heating the hydrocarbon precursor material in the thermal zone to form the graphenic carbon particles from the hydrocarbon precursor material, and collecting the graphenic carbon particles. The hydrocarbon precursor material may comprise a hydrocarbon and/or methane capable of forming a two-carbon-fragment species. Apparatus (20) for performing such a method, and graphenic particles produced by the method, are also disclosed.
Abstract:
Coating compositions containing graphenic carbon particles are disclosed. The graphenic carbon particles may be thermally produced and dispersed in thermoset and/or thermoset polymeric film coatings. The cured coatings exhibit desirable properties such as increased electrical conductivity
Abstract:
Coating compositions are disclosed that include corrosion resisting particles such that the coating composition can exhibit corrosion resistance properties. Also disclosed are substrates at least partially coated with a coating deposited from such a composition and multi-component composite coatings, wherein at least one coating later is deposited from such a coating composition. Methods and apparatus for making ultrafine solid particles are also disclosed.
Abstract:
Methods are disclosed in which an electrically conductive substrate is immersed in electrodepositable composition including graphenic carbon particles, the substrate serving as an electrode in an electrical circuit comprising the electrode and a counter-electrode immersed in the composition, a coating being applied onto or over at least a portion of the substrate as electric current is passed between the electrodes. The electrodepositable composition comprises an aqueous medium, an ionic resin, and solid particles including graphenic carbon particles. The solid particles may also include lithium-containing particles.
Abstract:
Graphenic carbon particles having controlled aspect ratios, surface areas, numbers of carbon atom layers, and Raman spectroscopy peak ratios are disclosed. The graphenic carbon particles may include three or more stacked carbon atom layers, and may have a Raman spectroscopy 2D/G peak ratio of at least 1:1. Adjacent carbon atom layers within each graphenic carbon particle may be slightly misaligned with respect to each other to form a turbostatic structure.
Abstract:
Resistive heating assemblies comprising a substrate, a conductive coating comprising graphenic carbon particles applied to at least a portion of the substrate, and a source of electrical current connected to the conductive coating are disclosed. Conductive coatings comprising graphenic carbon particles having a thickness of less than 100 microns and an electrical conductivity of greater than 10,000 S/m are also disclosed.
Abstract:
Lithium ion battery electrodes including graphenic carbon particles are disclosed. Lithium ion batteries containing such electrodes are also disclosed. The graphenic carbon particles may be used in cathodes of such batteries by depositing a graphenic carbon particle-containing coating of a conductive substrate such as a metal foil The use of graphenic carbon particles in the cathodes results in improved performance of the lithium ion batteries.