摘要:
According to one embodiment of the present invention, a method of forming a semiconductor device includes forming a gate stack on an outer surface of a semiconductor body. First and second sidewall bodies are formed on opposing sides of the gate stack. A first recess is formed in an outer surface of the gate stack, and a first dopant is implanted into the gate stack after the first recess is formed. The first dopant diffuses inwardly from the outer surface of the gate stack that defines the first recess. The first dopant diffuses toward an interface between the gate stack and the semiconductor body. The first recess increases the concentration of the first dopant at the interface.
摘要:
According to one embodiment of the present invention, a method of forming a semiconductor device includes forming a gate stack on an outer surface of a semiconductor body. First and second sidewall bodies are formed on opposing sides of the gate stack. A first recess is formed in an outer surface of the gate stack, and a first dopant is implanted into the gate stack after the first recess is formed. The first dopant diffuses inwardly from the outer surface of the gate stack that defines the first recess. The first dopant diffuses toward an interface between the gate stack and the semiconductor body. The first recess increases the concentration of the first dopant at the interface.
摘要:
A method (200) fabricating a semiconductor device is disclosed. A poly oxide layer is formed over gate electrodes (210) on a semiconductor body and active regions defined within the semiconductor body in PMOS and NMOS regions. A nitride containing cap oxide layer is formed over the grown poly oxide layer (212). Offset spacers are formed adjacent to sidewalls of the gate electrodes (216). Extension regions are then formed (214) within the PMOS region and the NMOS region. Sidewall spacers are formed (218) adjacent to the sidewalls of the gate. electrodes. An n-type dopant is implanted into the NMOS region to form source/drain regions and a p-type dopant is implanted with an overdose amount into the PMOS region to form the source/drain regions within the PMOS region (220). A poly cap layer is formed over the device (222) and an anneal or other thermal process is performed (224) that causes the p-type dopant to diffuse into the nitride containing cap oxide layer and obtain a selected dopant profile having sufficient lateral abruptness.
摘要:
An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
摘要:
A method (100) of forming semiconductor structures (202) including high-temperature processing steps (step 118), incorporates the use of a high-temperature nitride-oxide mask (220) over protected regions (214) of the device (202). The invention has application in many different embodiments, including but not limited to, the formation of recess, strained device regions (224).
摘要:
The present invention provides a system for limiting degradation of a first semiconductor structure (304) caused by an electric field (314), generated from within the semiconductor substrate (302) by high voltage on a second semiconductor structure (310). A semiconductor device (300) is adapted to reduce the effective magnitude of the field—as realized at structure 304—to some fractional component (320), or to render the angle (322)—at which the field approaches the first structure through a first substrate region (306)—acute. Certain embodiments of the present invention provide for: lateral recession of the first semiconductor structure to abut an isolation structure (312), which is disposed between the second semiconductor structure and the first substrate region; lateral recession of the first semiconductor structure from the isolation structure, so as to form a moat therebetween; and a counter-doped region (316) within the first substrate region.
摘要:
The present invention provides a system and method for processing low voltage threshold transistors on a semiconductor wafer. The method may include: forming core transistors with drains on the semiconductor wafer; forming low voltage threshold transistors with drains on the semiconductor wafer; forming input output transistors with drains on the semiconductor wafer; forming a spacing layer over the core, low voltage and input output transistors; forming a first photoresist mask layer over the low voltage transistors; doping the drains of the core and the input output transistors, wherein the doping is a medium doping; forming a second photoresist mask layer over the input output transistors; and doping the drains of the core and the low voltage threshold transistors, wherein the doping is a medium doping.
摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Carbon-doped silicon is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The carbon-doped silicon formed in the recesses resides close to the transistor channel and serves to provide a tensile stress to the channel, thereby facilitating improved carrier mobility in NMOS type transistor devices.
摘要:
A method (100) of forming a transistor includes forming a gate structure (108) over a semiconductor body and forming recesses (112) using an isotropic etch using the gate structure as an etch mask. The isotropic etch forms a recess in the semiconductor body that extends laterally in the semiconductor body toward a channel portion of the semiconductor body underlying the gate structure. The method further includes epitaxially growing silicon (114) comprising stress-inducing species in the recesses. The source and drain regions are then implanted (120) in the semiconductor body on opposing sides of the gate structure.
摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Carbon-doped silicon is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The carbon-doped silicon formed in the recesses resides close to the transistor channel and serves to provide a tensile stress to the channel, thereby facilitating improved carrier mobility in NMOS type transistor devices.