摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The silicon germanium formed in the recesses resides close to the transistor channel and serves to provide a compressive stress to the channel, thereby facilitating improved carrier mobility in PMOS type transistor devices.
摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The silicon germanium formed in the recesses resides close to the transistor channel and serves to provide a compressive stress to the channel, thereby facilitating improved carrier mobility in PMOS type transistor devices.
摘要:
A method (100) of forming a transistor includes forming a gate structure (108) over a semiconductor body and forming recesses (112) using an isotropic etch using the gate structure as an etch mask. The isotropic etch forms a recess in the semiconductor body that extends laterally in the semiconductor body toward a channel portion of the semiconductor body underlying the gate structure. The method further includes epitaxially growing silicon (114) comprising stress-inducing species in the recesses. The source and drain regions are then implanted (120) in the semiconductor body on opposing sides of the gate structure.
摘要:
Methods (50) are presented for transistor fabrication, in which first and second sidewall spacers (120a, 120b) are formed laterally outward from a gate structure (114), after which a source/drain region (116) is implanted. The method (50) further comprises removing all or a portion of the second sidewall spacer (120b) after implanting the source/drain region (116), where the remaining sidewall spacer (120a) is narrower following the source/drain implant to improve source/drain contact resistance and PMD gap fill, and to facilitate inducing stress in the transistor channel.
摘要:
A method (100) of forming a transistor includes forming a gate structure (108) over a semiconductor body and forming recesses (112) using an isotropic etch using the gate structure as an etch mask. The isotropic etch forms a recess in the semiconductor body that extends laterally in the semiconductor body toward a channel portion of the semiconductor body underlying the gate structure. The method further includes epitaxially growing silicon (114) comprising stress-inducing species in the recesses. The source and drain regions are then implanted (120) in the semiconductor body on opposing sides of the gate structure.
摘要:
Methods (50) are presented for transistor fabrication, in which first and second sidewall spacers (120a, 120b) are formed laterally outward from a gate structure (114), after which a source/drain region (116) is implanted. The method (50) further comprises removing all or a portion of the second sidewall spacer (120b) after implanting the source/drain region (116), where the remaining sidewall spacer (120a) is narrower following the source/drain implant to improve source/drain contact resistance and PMD gap fill, and to facilitate inducing stress in the transistor channel.
摘要:
A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Amorphous silicon regions are then formed (114) in the recesses. The amorphous silicon regions are re-crystallized. Sidewall spacers are formed (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The re-crystallized silicon regions formed in the recesses reside close to the transistor channel and serve to facilitate improved carrier mobility in NMOS type transistor devices.
摘要:
A method (100) of forming semiconductor structures (202) including high-temperature processing steps (step 118), incorporates the use of a high-temperature nitride-oxide mask (220) over protected regions (214) of the device (202). The invention has application in many different embodiments, including but not limited to, the formation of recess, strained device regions (224).
摘要:
A method of forming a retrograde well in a transistor is provided. A transistor structure having a substrate, a gate, and a gate oxide layer between the substrate and the gate is formed. The substrate includes a channel region located generally below the gate. A first dopant is implanted into the channel region. A second dopant is implanted into the substrate to form a doped source region and a doped drain region. A third dopant is implanted into the gate oxide layer. A source/drain anneal is performed to form a source and a drain in the doped source region and the doped drain region, respectively. The source/drain anneal causes a portion of the first dopant in the channel region to be attracted by the third dopant into the gate oxide layer.
摘要:
A method of forming a retrograde well in a transistor is provided. A transistor structure having a substrate, a gate, and a gate oxide layer between the substrate and the gate is formed. The substrate includes a channel region located generally below the gate. A first dopant is implanted into the channel region. A second dopant is implanted into the substrate to form a doped source region and a doped drain region. A third dopant is implanted into the gate oxide layer. A source/drain anneal is performed to form a source and a drain in the doped source region and the doped drain region, respectively. The source/drain anneal causes a portion of the first dopant in the channel region to be attracted by the third dopant into the gate oxide layer.