Abstract:
A rotary engine includes an insert having a pilot subchamber defined therein and communicating with the internal cavity of the engine. A pilot fuel injector has a tip in communication with the pilot subchamber. An ignition element extends into an element cavity defined through the insert adjacent the pilot subchamber. The element cavity is in communication with the pilot subchamber through a communication opening defined in the insert between the element cavity and the pilot subchamber. The communication opening is smaller than a portion of the ignition element adjacent the communication opening such as to prevent the portion of the ignition element from completely passing through the communication opening upon breaking off of the portion of the ignition element from a remainder of the ignition element. An outer body for a rotary engine and a method of combusting fuel in a rotary engine are also provided.
Abstract:
A rotary engine including an insert in one of the walls of the outer body. The insert has a pilot subchamber defined therein communicating with the internal cavity and includes a subchamber wall surrounding the pilot subchamber. A main fuel injector is in communication with the internal cavity at a location spaced apart from the insert. A pilot fuel injector is in communication with the pilot subchamber. A heating element extends within the subchamber wall completely outside of the pilot subchamber, in heat transfer communication with the subchamber wall. An outer body for a rotary engine and a method of combusting fuel in a rotary engine are also provided.
Abstract:
A compound engine assembly with an inlet duct, a compressor, an engine core including at least one internal combustion engine, and a turbine section including a turbine shaft configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft and the engine shaft are parallel to each other. The turbine shaft, the engine shaft and at least part of the inlet duct are all radially offset from one another. A method of driving a rotatable load of an aircraft is also discussed.
Abstract:
A compound engine assembly with an inlet duct, a compressor, an engine core including at least one internal combustion engine, and a turbine section including a turbine shaft configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft and the engine shaft are parallel to each other. The turbine shaft, the engine shaft and at least part of the inlet duct are all radially offset from one another. A method of driving a rotatable load of an aircraft is also discussed.
Abstract:
A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section, and a compressor having an outlet in fluid communication with an inlet of the engine core. A casing is connected to the turbine section, compressor and engine core. A mount cage is connected to mounts attached to the casing between the compressor and a hot zone including the turbine section and exhaust pipe(s). The struts are separated from the hot zone by at least one firewall. The mount cage may include a plurality of struts all extending from the mounts away from the turbine section and engine core. The casing may be a gearbox module casing through which the turbine shaft in engaged with the engine shaft. The mount cage may be completely contained within an axial space with the turbine section and exhaust pipe(s) being located outside of the axial space.
Abstract:
A compound engine assembly with an engine core including at least one internal combustion engine, a compressor, and a turbine section where the turbine shaft is configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft is rotationally supported by a plurality of bearings all located on a same side of the compressor rotor(s) and all located on a same side of the turbine rotor(s), for example all located between the compressor rotor(s) and the turbine rotor(s), such that the compressor rotor(s) and the turbine rotor(s) are cantilevered. A method of driving a rotatable load of an aircraft is also discussed.
Abstract:
A rotary engine includes an insert having a pilot subchamber defined therein and communicating with the internal cavity of the engine. A pilot fuel injector has a tip in communication with the pilot subchamber. An ignition element extends into an element cavity defined through the insert adjacent the pilot subchamber. The element cavity is in communication with the pilot subchamber through a communication opening defined in the insert between the element cavity and the pilot subchamber. The communication opening is smaller than a portion of the ignition element adjacent the communication opening such as to prevent the portion of the ignition element from completely passing through the communication opening upon breaking off of the portion of the ignition element from a remainder of the ignition element. An outer body for a rotary engine and a method of combusting fuel in a rotary engine are also provided.
Abstract:
A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section including a turbine shaft in driving engagement with the engine shaft, and a compressor, and a firewall. The compressor is located on one side of the firewall, and the turbine section and the engine core are located on the other side. The assembly may include a gearbox module with the turbine section and the engine core located on a same side of the gearbox module casing and the compressor located on the opposite side of the gearbox module casing, and with the firewall extending from the gearbox module casing. One or more rotatable accessory may be located on a same side of the firewall as the compressor. A method of reducing fire hazard in a compound engine assembly is also discussed.
Abstract:
An engine assembly including an engine core with at least one internal combustion engine, a first casing, a turbine module including a second casing located outside of the first casing, and a compressor module including a third casing located outside of the first and second casings. The turbine shaft extends into the first casing, is rotationally supported by a bearings all contained within the first casing, and is free of rotational support within the second casing. The first casing may be a gearbox module casing through which the turbine shaft is in driving engagement with the engine shaft. A method of driving a rotatable load of an aircraft, and an engine assembly with a rotary engine core, a gearbox module with a first casing, and a second module including a second casing located outside of the first casing and detachably connected to the first casing are also discussed.
Abstract:
A compound engine assembly with an engine core including at least one internal combustion engine, a compressor, and a turbine section where the turbine shaft is configured to compound power with the engine shaft. The turbine section may include a first stage turbine and a second stage turbine. The turbine shaft is rotationally supported by a plurality of bearings all located on a same side of the compressor rotor(s) and all located on a same side of the turbine rotor(s), for example all located between the compressor rotor(s) and the turbine rotor(s), such that the compressor rotor(s) and the turbine rotor(s) are cantilevered. A method of driving a rotatable load of an aircraft is also discussed.