Abstract:
A storage controller of a data storage subsystem including a plurality of storage devices in a redundant array of independent drives (RAID) configuration writes a first RAID stripe to the plurality of storage devices. Writing the first RAID stripe includes for each storage device of a subset of the plurality of storage devices, writing within a page of the storage device, user data, and checksums that validate the user data stored on storage devices of the subset of the plurality of storage devices and writing, within a page of a particular storage device of the plurality of storage devices inter-device redundancy data, intra-page error recovery data, and inter-page protection data.
Abstract:
A system and method for offset protection data in a RAID array. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array is configured to store user data in a first page of a first storage device of the plurality of storage devices; generate intra-device protection data corresponding to the user data, and store the intra-device protection data at a first offset within the first page. The controller is further configured to generate inter-device protection data corresponding to the first page, and store the inter-device protection data at a second offset within a second page in a second storage device of the plurality of storage devices, wherein the first offset is different from the second offset.
Abstract:
A system and method for effectively scheduling read and write operations among a plurality of solid-state storage devices. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array comprises an I/O scheduler. The characteristics of corresponding storage devices are used to schedule I/O requests to the storage devices in order to maintain relatively consistent response times at predicted times. In order to reduce a likelihood of unscheduled behaviors of the storage devices, the storage controller is configured to schedule proactive operations on the storage devices that will reduce a number of occurrences of unscheduled behaviors.
Abstract:
A system and method for scheduling read and write operations among a plurality of solid-state storage devices. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array comprises an I/O scheduler. The data storage controller is configured to receive requests targeted to the data storage medium, said requests including a first type of operation and a second type of operation. The controller is further configured to schedule requests of the first type for immediate processing by said plurality of storage devices, and queue requests of the second type for later processing by the plurality of storage devices. Operations of the first type may correspond to operations with an expected relatively low latency, and operations of the second type may correspond to operations with an expected relatively high latency.
Abstract:
A system and method for effectively scheduling read and write operations among a plurality of solid-state storage devices. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array comprises an I/O scheduler. The storage controller is configured to receive a read request targeted to the data storage medium, and identify at least a first storage device of the plurality of storage devices which contains data targeted by the read request. In response to either detecting or predicting the first storage device will exhibit variable performance, the controller is configured to generate a reconstruct read request configured to obtain the data from one or more devices of the plurality of storage devices other than the first storage device.
Abstract:
A system and method for scheduling read and write operations among a plurality of solid-state storage devices. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array comprises an I/O scheduler. The data storage controller is configured to receive requests targeted to the data storage medium, said requests including a first type of operation and a second type of operation. The controller is further configured to schedule requests of the first type for immediate processing by said plurality of storage devices, and queue requests of the second type for later processing by the plurality of storage devices. Operations of the first type may correspond to operations with an expected relatively low latency, and operations of the second type may correspond to operations with an expected relatively high latency.
Abstract:
A system and method for offset protection data in a RAID array. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array is configured to store user data in a first page of a first storage device of the plurality of storage devices; generate intra-device protection data corresponding to the user data, and store the intra-device protection data at a first offset within the first page. The controller is further configured to generate inter-device protection data corresponding to the first page, and store the inter-device protection data at a second offset within a second page in a second storage device of the plurality of storage devices, wherein the first offset is different from the second offset.
Abstract:
A system and method for adaptive RAID geometries. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array is configured to determine a first RAID layout for use in storing data, and write a first RAID stripe to the device group according to the first RAID layout. In response to detecting a first condition, the controller is configured to determine a second RAID layout which is different from the first RAID layout, and write a second RAID stripe to the device group according to the second layout, whereby the device group concurrently stores data according to both the first RAID layout and the second RAID layout.
Abstract:
A system and method for offset protection data in a RAID array. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array is configured to store user data in a first page of a first storage device of the plurality of storage devices; generate intra-device protection data corresponding to the user data, and store the intra-device protection data at a first offset within the first page. The controller is further configured to generate inter-device protection data corresponding to the first page, and store the inter-device protection data at a second offset within a second page in a second storage device of the plurality of storage devices, wherein the first offset is different from the second offset.
Abstract:
A system and method for dynamic RAID geometries. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array is configured to configure a first subset of the storage devices for use in a first RAID layout, the first RAID layout including a first set of redundant data. The controller further configures a second subset of the storage devices for use in a second RAID layout, the second RAID layout including a second set of redundant data. Additionally, the controller configure an additional device not included in either the first subset or the second subset to store redundant data for both the first RAID layout and the second RAID layout. The controller is further configured to initiate a reconstruct read corresponding to a given read request directed to a particular storage device of the plurality of storage devices, in response to determining the particular storage device is exhibiting a non-error related relatively slow read response.