Abstract:
A solar cell module includes: a first solar cell having a first principal surface on which n-side and p-side electrodes are provided; a second solar cell having a second principal surface on which n-side and p-side electrodes are provided; a connection member that connects the first principal surface and the second principal surface; a first conductive adhesion part that connects the n-side electrode of the first solar cell with the connection member; a second conductive adhesion part that connects the p-side electrode of the second solar cell with the connection member; and an intermediate insulation part that is provided at a position on a surface of the connection member between the first conductive adhesion part and the second conductive adhesion part and is provided at a distance from at least one of the first solar cell and the second solar cell.
Abstract:
A method of manufacturing a solar cell includes: forming a conductive thin film layer on a semiconductor substrate; forming an insulating film on the conductive thin film layer; forming a conductive thin film layer exposed portion by removing a part of the insulating film; forming a plating film in the conductive thin film layer exposed portion; and removing the insulating film and the conductive thin film layer in an area not overlapping the plating film, wherein the plating film formed in the forming of a plating film is formed to cover the insulating film.
Abstract:
A solar cell is provided that comprising a semiconductor substrate having a first conductivity type; a first semiconductor layer having the first conductivity type, and on a principal surface of the semiconductor substrate; an insulation layer on the first semiconductor layer; a protective layer on the insulation layer; and a second semiconductor layer having a second conductivity type, and on the semiconductor substrate and the protective layer. A recessed region is positioned at a lateral side of the insulation layer, the recessed region formed by recessing a side surface of the insulation layer inward from a side surface of the first semiconductor layer and a side surface of the protective layer, and the second semiconductor layer is positioned in the recessed region above the first semiconductor layer in the recessed region.
Abstract:
A method of manufacturing a solar cell includes: providing an insulating layer on a semiconductor layer provided on at least a part of a principle surface of a semiconductor substrate; providing a mask layer on the insulating layer; removing a part of the mask layer by laser irradiation so as to form a first opening through which the insulating layer is exposed; and removing, by an etching agent, the insulating layer exposed through the first opening so as to form a second opening through which the semiconductor layer is exposed.
Abstract:
A solar cell has a photoelectric conversion unit in which an n-type region including an n-type amorphous semiconductor layer and a p-type region including a p-type amorphous semiconductor layer are disposed in a planar manner, light such as solar light is received, and photoproduction carriers including holes and electrons are generated. Electrodes through which the photoelectrically converted electric power is taken out are also provided, and a resistance measurement unit is provided in an outer periphery of an electrode region in which the electrodes are disposed. The resistance measurement unit has two measurement electrodes extending from the n-type region and one measurement electrode extending from the p-type region, and the measurement electrodes are disposed with a predetermined inter-electrode space therebetween.
Abstract:
A method of manufacturing a solar cell includes: forming a conductive thin film layer on a semiconductor substrate; forming an insulating film on the conductive thin film layer; forming a conductive thin film layer exposed portion by removing a part of the insulating film; forming a plating film in the conductive thin film layer exposed portion; and removing the insulating film and the conductive thin film layer in an area not overlapping the plating film, wherein the plating film formed in the forming of a plating film is formed to cover the insulating film.
Abstract:
A semiconductor substrate has a first area and a second area. A seed layer is provided on a principal surface of the semiconductor substrate including the first area and the second area. Insulating layers are discretely provided on the seed layer in the first area and not provided on the seed layer in the second area. Plating layers in the first area are connected to the seed layer between the discretely provided insulating layers and connected to the seed layer in the second area.
Abstract:
A method of forming an electrode pattern includes: forming, on a base material, a seed layer having a pattern corresponding to the electrode pattern; forming an organic material layer on the seed layer; producing an electrode layer transfer sheet by forming an electrode layer on the organic material layer via an electroplating process using the seed layer as a seed; disposing the electrode layer transfer sheet on a substrate on which the electrode pattern is to be formed such that the electrode layer is in contact with the substrate and pressure bonding the electrode layer to the substrate; and in a state in which the electrode layer is pressure bonded to the substrate, removing the base material along with the organic material layer and the seed layer to transfer the electrode layer to the substrate.