Abstract:
A lighting device includes an electricity storage electrically connected in parallel with a solid light source, a switching circuit that produces a current to supply the current to the electricity storage, and a control circuit that controls, according to a dimming level, burst dimming by controlling the switching circuit so that the solid light source is lit intermittently. When the dimming level is a threshold level or more, the control circuit sets an electricity storage capacity of the electricity storage to a first capacity, and sets a frequency by the burst dimming to a first frequency. When the dimming level is below the threshold level, the control circuit sets the electricity storage capacity to a second capacity smaller than the first capacity, and sets the frequency by the burst dimming to a second frequency higher than the first frequency.
Abstract:
When supplying an LED light source with a first output voltage that is equal to or higher than a threshold voltage, an LED driver causes a DC power supply to output a first DC voltage and causes a switching regulator to supply the LED light source with the first output voltage. When supplying the LED light source with a second output voltage that is below the threshold voltage, the LED driver causes the DC power supply to output a second DC voltage lower than the first DC voltage and causes the dropper regulator to supply the LED light source with the second output voltage.
Abstract:
A lighting device includes at least first and second lighting circuits configured to receive electric power from a single common DC power supply. First lighting circuit includes a first output capacitor connected between output ends thereof, and a first pre-charge circuit configured to keep a voltage across first output capacitor at a first voltage for first lighting circuit, while a first light source is in OFF state. Second lighting circuit includes a second output capacitor connected between output ends thereof, and a second pre-charge circuit configured to keep a voltage across second output capacitor at a second voltage for second lighting circuit, while a second light source is in OFF state. First and second voltages are set such that a difference between a forward voltage of first light source and the first voltage agrees with a difference between a forward voltage of second light source and the second voltage.
Abstract:
The lighting device includes a control unit configured to set desired values of drive currents of solid state light sources with different light emission colors. The control unit has a normal mode and a correction mode. The normal mode is a mode of setting the desired values to normal desired values corresponding to instruction values representing a desired color of colors. The correction mode is a mode of setting the desired values to corrected desired values corresponding to corrected instruction values obtained by correcting the instruction values.
Abstract:
The lighting device includes a controller for determining first, second, and third desired values of first, second, third drive currents to first, second, and third light sources, based on a correction coefficient for correcting chromaticity points of the first, second, and third light sources to first, second, and third chromaticity points. The first, second, and third light sources have first, second, and third ranges of individual differences in color. The first chromaticity point is an intersection of a straight line touching the first and second ranges and another straight line touching the first and third ranges. The second chromaticity point is an intersection of a straight line touching the second and first ranges and another straight line touching the second and third ranges. The third chromaticity point is an intersection of a straight line touching the third and first ranges and another straight line touching the third and second ranges.