Abstract:
A transmitter communicates with a receiver via a satellite station that transmits a signal by a multibeam system. The transmitter includes a scheduler and a transmission unit. The scheduler performs scheduling to determine a time and a wireless channel to transmit data addressed to the receiver based on an area where the receiver is present. The transmission unit transmits a signal of the data addressed to the receiver to the satellite station by the wireless channel determined by the scheduler and at the time determined by the scheduler. The signal transmitted from the transmission unit by an i-th (i is an integer of 1 or larger) wireless channel is transmitted from the satellite station to the receiver by an i-th beam. Frequencies of signals transmitted from the satellite station by respective beams are same.
Abstract:
A visible light communication device is a visible light communication device capable of communicating with an other communication device, and includes an image acquisition unit and an image processing unit. The image acquisition unit acquires a first image signal including an R component, a G component, and a B component, the first image signal being output based on a communication signal of a visible light communication. The image processing unit outputs a second image signal in which an influence of the R component of the first image signal is reduced during the visible light communication with the other communication device.
Abstract:
A radar detection system according to the present disclosure is a radar detection system that detects an obstacle to an aircraft in an airport. The radar detection system includes a radar apparatus, and a control apparatus. The radar apparatus detects an obstacle by transmitting and receiving a radar signal, and acquires obstacle information regarding the obstacle detected based on the received radar signal. The control apparatus switches the operation of the radar apparatus according to the aircraft state of the aircraft. The control apparatus turns off the radar apparatus when the aircraft takes off, and turns on the radar apparatus when the aircraft makes a landing.
Abstract:
In a transmission device, a determining unit determines, for use in transmission, an LDPC encoding method corresponding to occurrence conditions of external noise from a plurality of LDPC encoding methods each having the same code length and the same code rate and being defined by a different parity check matrix, and an encoding unit generates a codeword bit sequence by encoding transmission data using the LDPC encoding method determined by the determining unit.
Abstract:
The communication apparatus (1100) configured to be installed in a first aircraft (1b) comprises a controller (1110) and a transmitter (1106). The controller (1110) is configured to acquire resource information and determine a communication condition based on the resource information, the resource information being related to a second aircraft (1a) different from the first aircraft (1b) or to a radio altimeter installed in the second aircraft (1a). The transmitter (1106) is configured to transmit transmission data to one other communication apparatus installed in the first aircraft (1b), according to the communication condition.
Abstract:
A method includes detecting status of stock displayed on stocking place like a shelf, and transmitting information based on the status of stock to deliverer having the stock a predefined receiver.