Abstract:
An imaging apparatus includes an imaging device, a first imaging optical system and a second imaging optical system that form respective input images from mutually different viewpoints onto the imaging device, and a first modulation mask and a second modulation mask that modulate the input images formed by the first imaging optical system and the second imaging optical system. The imaging device captures a superposed image composed of the two input images that have been formed by the first imaging optical system and the second imaging optical system, modulated by the first modulation mask and the second modulation mask, and optically superposed on each other, and the first modulation mask and the second modulation mask have mutually different optical transmittance distribution characteristics.
Abstract:
An optical filter including filter regions arrayed two-dimensionally, in which the filter regions include a first region and a second region; a wavelength distribution of an optical transmittance of the first region has a first local maximum in a first wavelength band and a second local maximum in a second wavelength band that differs from the first wavelength band, and a wavelength distribution of an optical transmittance of the second region has a third local maximum in a third wavelength band that differs from each of the first wavelength band and the second wavelength band and a fourth local maximum in a fourth wavelength band that differs from the third wavelength band.
Abstract:
An imaging apparatus including a light source that, in operation, emits pulsed light to a measurement target; a diffusion member that is disposed between the light source and the measurement target, and diffuses the pulsed light; an image sensor that includes at least one pixel, the at least one pixel including a photodiode and a charge accumulator that, in operation, accumulates signal charge from the photodiode; and a control circuit that, in operation, controls the image sensor. The control circuit causes the image sensor to start to accumulate the signal charge with the charge accumulator in a falling period of a returned pulsed light which is returned from the measurement target to the image sensor due to the emission of the pulsed light, the falling period being a period from start to end of a decrease of an intensity of the returned pulsed light.
Abstract:
A distance measurement system includes: a signal generator which generates a light emission signal that instructs light emission and an exposure signal that instructs exposure of reflected light; a first illumination and distance measurement light source which receives the light emission signal and, according to the signal received, performs the light emission for illumination without a purpose of distance measurement and the light emission with the purpose of distance measurement using the reflected light; an imaging device which receives the exposure signal, performs the exposure according to the signal received, and obtains an amount of light exposure of the reflected light; and a calculator which calculates distance information using the amount of light exposure and outputs the distance information, wherein the distance measurement system has operation modes including an illumination mode and a first distance measurement mode.
Abstract:
An imaging apparatus including a light source that, in operation, emits pulsed light to a measurement target; a diffusion member that is disposed between the light source and the measurement target, and diffuses the pulsed light; an image sensor that includes at least one pixel, the at least one pixel including a photodiode and a charge accumulator that, in operation, accumulates signal charge from the photodiode; and a control circuit that, in operation, controls the image sensor. The control circuit causes the image sensor to start to accumulate the signal charge with the charge accumulator in a falling period of a returned pulsed light which is returned from the measurement target to the image sensor due to the emission of the pulsed light, the falling period being a period from start to end of a decrease of an intensity of the returned pulsed light.
Abstract:
An imaging apparatus including a light source that, in operation, emits pulsed light to a measurement target; a diffusion member that is disposed between the light source and the measurement target, and diffuses the pulsed light; an image sensor that includes at least one pixel, the at least one pixel including a photodiode and a charge accumulator that, in operation, accumulates signal charge from the photodiode; and a control circuit that, in operation, controls the image sensor. The control circuit causes the image sensor to start to accumulate the signal charge with the charge accumulator in a falling period of a returned pulsed light which is returned from the measurement target to the image sensor due to the emission of the pulsed light, the falling period being a period from start to end of a decrease of an intensity of the returned pulsed light.
Abstract:
A distance-measuring imaging device includes: a drive control unit; a light source unit; an image processing unit including light receiving units and charge reading units arranged one-to-one; and an image processing unit. The charge reading units are arranged partly at the left side of corresponding ones of the light receiving units and partly at the right side of corresponding ones of the same. In each of a period in which the exposure is performed when the exposure control signal is received after a first delay time since when the light emission control signal is received and a period in which the exposure is performed when the exposure control signal is received after a second delay time longer than the first delay time, since when the light emission control signal is received, the left-side charge reading units read charge leftward, and the right-side charge reading units read charge rightward.
Abstract:
A biological information detection device including: a light source that, in operation, emits irradiation light for irradiating a test portion of a subject; a light detector that, in operation, detects light reached from the test portion and that outputs an electrical signal corresponding to the light; and a calculation circuit that, in operation, generates a signal of biological information related to a blood flow in a target area in the test portion based on the electrical signal. The light detector is an image sensor. The electrical signal includes an image signal obtained by the image sensor. The calculation circuit, in operation, detects a magnitude of an inclination of an orientation of the test portion with respect to a reference orientation by image recognition based on the image signal, and determines the target area according to the magnitude of the inclination of the orientation of the test portion.