Abstract:
In a liquid crystal display device, a data signal generation unit generates a data signal for controlling the orientation of liquid crystal. A plurality of transistors supply the data signal output from a source IC unit to a plurality of data signal lines of a liquid crystal display panel in a time sharing manner. A gate signal line controls each of the plurality of transistors. A fluctuation suppression unit is connected to the gate signal line that controls any one of the plurality of transistors, and suppresses, in accordance with a gate signal of the connected gate signal line, a voltage fluctuation in the data signal which occurs when another transistor changes from the ON state to the OFF state.
Abstract:
To achieve improved detection accuracy and time and position resolutions in an in-cell type capacitive touch sensor embedded in a liquid crystal panel of a liquid crystal display device, a drive electrode of the touch sensor is formed in a boundary region for separating pixel electrodes formed on a surface of a TFT substrate on a liquid crystal side, and a detection electrode is formed in a region of an opposing substrate that opposes the boundary region. A drive signal is supplied to the drive electrode to cause a voltage change, and based on the voltage change in the detection electrode caused thereby, a capacitance change in an opposing part between the drive electrode and the detection electrode is detected, to thereby detect contact of an object to a display surface near the opposing part in a liquid crystal panel.
Abstract:
Provided is an embedded touch screen, including: a first substrate; a second substrate including: scanning signal lines extending in a first direction; video signal lines extending in a second direction; a plurality of pixels each including a pixel electrode connected to corresponding one of the video signal lines via a switching element connected to corresponding one of the scanning signal lines; and a common electrode; a liquid crystal layer; an application circuit for applying an alternating signal to a plurality of excitation electrodes; a detection circuit for detecting a signal excited on a plurality of detection electrodes each arranged adjacent to each of the plurality of excitation electrodes; and a scanning circuit for scanning at least one of each of the plurality of excitation electrodes and each of the plurality of detection electrodes at least in the second direction.
Abstract:
Provided is a liquid crystal display device, including: a plurality of scanning connection lines formed on at least one side of edges of the image display region, the plurality of scanning connection lines connecting together a scanning signal drive circuit and a plurality of scanning signal lines; a selection circuit formed so as to be interposed between the plurality of scanning connection lines and the plurality of scanning signal lines, the selection circuit being configured to selectively short-circuit one of a plurality of the scanning signal lines to one of the plurality of scanning connection lines based on a selection signal; and a selection signal line connected to the selection circuit, the selection signal line transmitting the selection signal to the selection circuit.
Abstract:
A display apparatus includes an image display region having pixels sectioned by scanning signal lines and video signal lines, scanning connecting lines, thin film transistors, selection signal lines connected to gate electrodes of the thin film transistors, plural ones of the thin film transistors connected to different ones of the scanning connecting lines being connected to one of the selection signal lines; and a scanning signal drive circuit. The scanning signal drive circuit performs a normal scanning mode in which pulse signals are supplied in turn to plural ones of the scanning connecting lines connected to the one of the selection signal lines, and in the normal scanning mode, a fall timing of the gate-on voltage differs from a fall timing of a last one of the pulse signals supplied to the plural ones of the scanning connecting lines during the selection period.
Abstract:
A level conversion circuit includes level conversion portions which are connected in series. The level conversion portion includes circuit blocks. The circuit block inverts an input signal. The circuit block includes a transistor connected between a power supply and a node, a transistor connected between the node and a power supply, a transistor connected between a gate of the transistor and the power supply, and a capacitor connected between an output node and the gate of the transistor. The circuit block carried out level conversion in step with operation of the transistor in accordance with a signal applied from an input node to a gate thereof and operation of the transistor an ON/OFF state of which is switched by application of an output of the circuit block to a gate thereof, to thereby output potential change at the node.
Abstract:
In a transparent substrate (10), there are formed a semiconductor layer (14) formed of an oxide semiconductor, the semiconductor layer (14) functioning as a channel portion of a TFT (2); an electrode (16) formed of a transparent conductive material and located over the semiconductor layer (14), and a light-shielding conductor (17) formed on the electrode (16), the light-shielding conductor being formed of a material which has a conductivity higher than that of the transparent conductive material and which has light-shielding property, the light-shielding conductor covering the semiconductor layer (14). This structure can inhibit exposure of the oxide semiconductor which forms the channel portion toward a light, and can lower the resistance of the electrode formed of the transparent conductive material.
Abstract:
A display apparatus includes an image display region having pixels sectioned by scanning signal lines and video signal lines, scanning connecting lines, thin film transistors, selection signal lines connected to gate electrodes of the thin film transistors, plural ones of the thin film transistors connected to different ones of the scanning connecting lines being connected to one of the selection signal lines; and a scanning signal drive circuit. The scanning signal drive circuit performs a normal scanning mode in which pulse signals are supplied in turn to plural ones of the scanning connecting lines connected to the one of the selection signal lines, and in the normal scanning mode, a fall timing of the gate-on voltage differs from a fall timing of a last one of the pulse signals supplied to the plural ones of the scanning connecting lines during the selection period.
Abstract:
Provided is a liquid crystal display device, including: a plurality of scanning connection lines formed on at least one side of edges of the image display region, the plurality of scanning connection lines connecting together a scanning signal drive circuit and a plurality of scanning signal lines; a selection circuit formed so as to be interposed between the plurality of scanning connection lines and the plurality of scanning signal lines, the selection circuit being configured to selectively short-circuit one of a plurality of the scanning signal lines to one of the plurality of scanning connection lines based on a selection signal; and a selection signal line connected to the selection circuit, the selection signal line transmitting the selection signal to the selection circuit.
Abstract:
An embedded touch screen, including: a first substrate including, on a front surface thereof, a plurality of detecting electrodes extending in a second direction; a second substrate having an image region in which a plurality of pixels are arranged in matrix, the second substrate including: a pixel electrode connected to corresponding one of the plurality of video signal lines via a switching element connected to corresponding one of the plurality of scanning signal lines in each of the plurality of pixels; and a common electrode; a liquid crystal layer sandwiched between the first substrate and the second substrate; an application circuit for applying an alternating signal to the pixel electrode; a detection circuit for detecting a signal excited on the corresponding one of the plurality of detecting electrodes; and a scanning circuit for scanning the pixel electrode in the second direction during detection by the detection circuit.