Abstract:
A dense hydrogen-permeable layer, such as palladium or palladium alloy, is deposited on a porous hollow fiber. A porous hollow fiber is defined as having an inner diameter of approximately 30 microns to approximately 1500 microns and an outer diameter of approximately 100 microns to approximately 2000 microns. This allows an order-of-magnitude increase in the surface per volume ratio in a hydrogen separation or purification module, or a membrane reformer or reactor.
Abstract:
A dense hydrogen-permeable layer, such as palladium or palladium alloy, is deposited on a porous hollow fiber. A porous hollow fiber is defined as having an inner diameter of approximately 30 microns to approximately 1500 microns and an outer diameter of approximately 100 microns to approximately 2000 microns. This allows an order-of-magnitude increase in the surface per volume ratio in a hydrogen separation or purification module, or a membrane reformer or reactor.
Abstract:
The present invention relates to a process for purifying a CO2 rich gas stream in a catalytic oxidizer. In this process, flammable contaminants that are present in the CO2 rich gas stream are oxidized when the CO2 rich gas stream is injected along with a precisely measured amount of substantially pure oxygen into the catalytic oxidizer. As a result, a purified CO2 rich gas stream is produced which depending upon the amount of oxygen injected contains only minor traces of residual oxygen or minor traces of the flammable contaminants. This process is useful for purifying high-pressure residue streams from membrane water-gas shift reactors, membrane reformers, or sorbent enhanced reformers, where the pressurized CO2 rich gas stream also contains amounts of hydrogen, methane, and carbon monoxide. The process is also suitable for purifying CO2 permeate streams from reverse selectivity polymeric membranes that are used to separate CO2 from gas mixtures that contain CO2, H2 and CH4. In a further embodiment of the present invention, the inlet and outlet temperature of the catalytic oxidizer can be controlled by recycling part of the purified CO2 rich gas stream to the catalytic oxidizer inlet and/or injecting additional fuel into the catalytic oxidizer. Thereby, a useful amount of heat can be extracted and returned for use anywhere in the CO2 generating process. The heat obtained via the present process may also be utilized in other processes.
Abstract:
A fuel cell system includes a housing partially above and below the ground containing a fuel cell beneath ground level and a fuel tank disposed above the fuel cell. The fuel cell may be accessed by raising it to above ground level with a fuel cell vertical displacement device
Abstract:
A process for removing carbon dioxide from a carbon dioxide containing gas stream is obtained through de-sublimation, vaporization, and liquefaction of various carbon dioxide-containing streams with little or no external refrigeration.
Abstract:
A fuel cell system includes a housing partially above and below the ground containing a fuel cell beneath ground level and a fuel tank disposed above the fuel cell. The fuel cell may be accessed by raising it to above ground level with a fuel cell vertical displacement device.