摘要:
Techniques are disclosed for controlling robot pixels to display a visual representation of an input. The input to the system could be an image of a face, and the robot pixels deploy in a physical arrangement to display a visual representation of the face, and would change their physical arrangement over time to represent changing facial expressions. The robot pixels function as a display device for a given allocation of robot pixels. Techniques are also disclosed for distributed collision avoidance among multiple non-holonomic robots to guarantee smooth and collision-free motions. The collision avoidance technique works for multiple robots by decoupling path planning and coordination.
摘要:
Techniques are disclosed for controlling robot pixels to display a visual representation of an input. The input to the system could be an image of a face, and the robot pixels deploy in a physical arrangement to display a visual representation of the face, and would change their physical arrangement over time to represent changing facial expressions. The robot pixels function as a display device for a given allocation of robot pixels. Techniques are also disclosed for distributed collision avoidance among multiple non-holonomic robots to guarantee smooth and collision-free motions. The collision avoidance technique works for multiple robots by decoupling path planning and coordination.
摘要:
Techniques are disclosed for controlling robot pixels to display a visual representation of a real-world video texture. Mobile robots with controllable color may generate visual representations of the real-world video texture to create an effect like fire, sunlight on water, leaves fluttering in sunlight, a wheat field swaying in the wind, crowd flow in a busy city, and clouds in the sky. The robot pixels function as a display device for a given allocation of robot pixels. Techniques are also disclosed for distributed collision avoidance among multiple non-holonomic and holonomic robots to guarantee smooth and collision-free motions.
摘要:
A method recognizes three-dimensional physical objects using three-dimensional deformable templates. A particular object is scanned with a camera to generate volumetric data representing the object. The volumetric data is compared to each of a plurality of three-dimensional deformable templates stored in a database to obtain a score for each comparison. The deforming of the template is done by optimizing an objective function.
摘要:
A system for creating lighting for a photograph generates a large number ofmages based upon structures determined from the photograph and randomly selected light positions, types and directions. One or more photographs are analyzed to determine the three-dimensional structures in the photographs. These structures are represented as gray surfaces, to which lighting is applied. The images are culled to provide a set of images which best spans the lighting space represented by the large number of images. The culling process is iterative; at each iteration, the image which is most dissimilar from a nearest neighbor in the selected set is added to the selected set. The images are organized in a hierarchical structure. A user interface allows the user to review and select images in the hierarchical structure. The images selected by the user are combined to create a final image with composite lighting. The lighting specifications can be saved for future reference by the lighting system or other applications. The lighting of the gray surface images are used to modify the intensity of pixels in the photograph in order to change lighting in the photograph.
摘要:
Techniques are provided to model hair and skin. Multiscopic images are received that depict at least part of a subject having hair. The multiscopic images are analyzed to determine hairs depicted. Two-dimensional hair segments are generated that represent the hairs. Three-dimensional hair segments are generated based on the two-dimensional hair segments. A three-dimensional model of skin is generated based on the three-dimensional hair segments.
摘要:
A method detects edges of an object in a scene by first acquiring a static image of the scene when the scene is static, and a live image of the scene including the object. A reference image is constructed from the static image. Then, image gradients of the reference image are compared with image gradients of the live image to identify edges of the object in the live image.
摘要:
A three-dimensional coordinate position of a calibration device is determined. Further, a code is emitted to an image capture device. The code indicates the three-dimensional coordinate position of the calibration device. In addition, an image of light emitted from the calibration device is captured. The light includes the code. An image capture device three-dimensional coordinate position of the calibration device is calibrated according to the real world three-dimensional coordinate position of the calibration device indicated by the code.
摘要:
A rigidly-coupled projector-camera system is augmented with laser pointers. The projector-camera system and lasers can be used to determine homography between the projector and a display surface, so that a projection of any desired geometry can be made on the display surface.
摘要:
A method dynamically identifies a badge in a sequence of images of a scene acquired by a camera. Each image in the sequence includes a plurality of pixels, and each pixel has a color and an intensity. Each image is scanned to detect a border pixel. Adjacent pixels to the border pixel are connected to determine a connected region of pixels. An inner boundary of the connected region is determined, and an ellipse is fitted to the inner boundary. The internal pixels inside the ellipse are distorted to a circular form, and a plurality of spokes are fitted to the distorted internal pixels to identify colored segments. Then, an unique identity is associated with each badge according to the colored segments.