摘要:
A controllable lighting system may include a plurality of light source groups, a group controller for each light source group, a master controller, and a network communication system. Each group controller may be configured to control the light sources in its light source group based on a group control command. The master controller may be configured to receive a master control command relating to the light sources and to issue a group control command to each of the group controllers that collectively effectuate compliance with the master control command. The network communication system may be configured to communicate the group control commands from the master controller to the group controllers.
摘要:
A multiview face capture system may acquire detailed facial geometry with high resolution diffuse and specular photometric information from multiple viewpoints. A lighting system may illuminate a face with polarized light from multiple directions. The light may be polarized substantially parallel to a reference axis during a parallel polarization mode of operation and substantially perpendicular to the reference axis during a perpendicular polarization mode of operation. Multiple cameras may each capture an image of the face along a materially different optical axis and have a linear polarizer configured to polarize light traveling along its optical axis in a direction that is substantially parallel to the reference axis. A controller may cause each of the cameras to capture an image of the face while the lighting system is in the parallel polarization mode of operation and again while the lighting system is in the perpendicular polarization mode of operation.
摘要:
A system for estimating the specular roughness of points on a surface of an object may include a lighting system, an image capture system and a computer processing system. The lighting system may be configured to illuminate the surface of the object at different times with different illumination patterns. Each illumination pattern may illuminate the surface from a plurality of different directions and form an intensity gradient having an order of no more than two. The image capture system may be configured to capture an image of the surface of the object when illuminated by each of the different illumination patterns at each of the different times. The computer processing system may be configured to compute the specular roughness of each point on the surface of the object based on the images captured by the image capture system.
摘要:
A system for estimating the specular roughness of points on a surface of an object may include a lighting system, an image capture system and a computer processing system. The lighting system may be configured to illuminate the surface of the object at different times with different illumination patterns. Each illumination pattern may illuminate the surface from a plurality of different directions and form an intensity gradient having an order of no more than two. The image capture system may be configured to capture an image of the surface of the object when illuminated by each of the different illumination patterns at each of the different times. The computer processing system may be configured to compute the specular roughness of each point on the surface of the object based on the images captured by the image capture system.
摘要:
An apparatus to measure surface orientation maps of an object may include a light source that is configured to illuminate the object with a controllable field of illumination. One or more cameras may be configured to capture at least one image of the object. A processor may be configured to process the image(s) to extract the reflectance properties of the object including an albedo, a reflection vector, a roughness, and/or anisotropy parameters of a specular reflectance lobe associated with the object. The controllable field of illumination may include limited-order Spherical Harmonics (SH) and Fourier Series (FS) illumination patterns with substantially similar polarization. The SH and FS illumination patterns are used with different light sources.
摘要:
Techniques are described for modeling layered facial reflectance consisting of specular reflectance, single scattering, and shallow and deep subsurface scattering. Parameters of appropriate reflectance models can be estimated for each of these layers, e.g., from just 20 photographs recorded in a few seconds from a single view-point. Spatially-varying specular reflectance and single-scattering parameters can be extracted from polarization-difference images under spherical and point source illumination. Direct-indirect separation can be employed to decompose the remaining multiple scattering observed under cross-polarization into shallow and deep scattering components to model the light transport through multiple layers of skin. Appropriate diffusion models can be matched to the extracted shallow and deep scattering components for different regions on the face. The techniques were validated by comparing renderings of subjects to reference photographs recorded from novel viewpoints and under novel illumination conditions. Related geometry acquisition systems and software products are also described.
摘要:
Techniques are described for modeling layered facial reflectance consisting of specular reflectance, single scattering, and shallow and deep subsurface scattering. Parameters of appropriate reflectance models can be estimated for each of these layers, e.g., from just 20 photographs recorded in a few seconds from a single view-point. Spatially-varying specular reflectance and single-scattering parameters can be extracted from polarization-difference images under spherical and point source illumination. Direct-indirect separation can be employed to decompose the remaining multiple scattering observed under cross-polarization into shallow and deep scattering components to model the light transport through multiple layers of skin. Appropriate diffusion models can be matched to the extracted shallow and deep scattering components for different regions on the face. The techniques were validated by comparing renderings of subjects to reference photographs recorded from novel viewpoints and under novel illumination conditions. Related geometry acquisition systems and software products are also described.
摘要:
An apparatus to measure surface orientation maps of an object may include a light source that is configured to illuminate the object with a controllable field of illumination. One or more cameras may be configured to capture at least one image of the object. A processor may be configured to process the image(s) to extract the reflectance properties of the object including an albedo, a reflection vector, a roughness, and/or anisotropy parameters of a specular reflectance lobe associated with the object. The controllable field of illumination may include limited-order Spherical Harmonics (SH) and Fourier Series (FS) illumination patterns with substantially similar polarization. The SH and FS illumination patterns are used with different light sources.
摘要:
A controllable lighting system may include a plurality of light source groups, a group controller for each light source group, a master controller, and a network communication system. Each group controller may be configured to control the light sources in its light source group based on a group control command. The master controller may be configured to receive a master control command relating to the light sources and to issue a group control command to each of the group controllers that collectively effectuate compliance with the master control command. The network communication system may be configured to communicate the group control commands from the master controller to the group controllers.
摘要:
Provided is a method and apparatus for realistically reproducing an eyeball that may verify and analyze a material property and a deformation property with respect to each of constituent portions of an eyeball and may render each of the constituent portions based on the analyzed priorities, thereby more realistically reproducing the eyeball.