摘要:
A method of forming metal oxide powders includes the steps of solid state mixing of at least one metal nitrate salt and at least one reducing organic acid. The mixture is heated to form a metal oxide powder. A metal oxide precursor intermediate can be formed and then heated to form the metal oxide powder.
摘要:
A pipeline inspection tool has a spirally arranged series of blocks, with each block having a magnet and at least one magnetic flux sensor. An axially extending support may be provided which terminates in mounts and the series of blocks may be mounted between the mounts. The support may be arranged so as to permit bending of said series of blocks but resist torsion of said series of blocks. A supporting tendon may extend from a second of the mounts through a first opening in each block around a tendon supporting pulley of the first of the mounts and back through a second opening in each block to the second mount. A compression spring surrounding each arm of the tendon between the tendon support and the series of blocks. The magnet of each block may be arranged such that a like pole of each magnet is at one side of the series of blocks. The poles of each magnet may be longitudinally elongated and the longitudinally elongated poles may be directed along an axis of said tool. The magnetic flux sensors of each block may be between the poles of the magnet of each block.
摘要:
The application relates to a needle protection assembly (1) comprising:—a supporting element (18) and a needle shield (8),—one locking element (20) located within said needle protection assembly (1) and not accessible to the user,—urging means (24) for displacing said needle shield (8),—a peg (19) located on said supporting element (18) or on said needle shield (8), and a cam (9) located on said needle shield (8) or on said supporting element (18), and—said locking element (20) is not formed by said peg (19) and cam (9). The respective longitudinal axis of the needle shield (8) and of the locking element (20) are merged when said needle shield (8) is in its before use or in use positions, and they form an angle (a) when said needle shield (8) is in its after use position.
摘要:
The present invention relates to fluorescent, radio-opaque and magnetic quantum nanoparticles, useful as multifunctional contrast agents or probes for in vivo bioimaging, and methods of their use. The invention provides for multifaceted bioimaging (e.g., intra-arterial pre-operative brain mapping and broad based in vivo diagnostic imaging), including imaging of various cell types, such as stem cells.
摘要:
A pipeline inspection tool has a spirally arranged series of blocks, with each block having a magnet and at least one magnetic flux sensor. An axially extending support may be provided which terminates in mounts and the series of blocks may be mounted between the mounts. The support may be arranged so as to permit bending of said series of blocks but resist torsion of said series of blocks. A supporting tendon may extend from a second of the mounts through a first opening in each block around a tendon supporting pulley of the first of the mounts and back through a second opening in each block to the second mount. A compression spring surrounding each arm of the tendon between the tendon support and the series of blocks. The magnet of each block may be arranged such that a like pole of each magnet is at one side of the series of blocks. The poles of each magnet may be longitudinally elongated and the longitudinally elongated poles may be directed along an axis of said tool. The magnetic flux sensors of each block may be between the poles of the magnet of each block.
摘要:
A system and method for identifying explosive or other target materials includes the steps of irradiating a first location and a second location spaced apart from the first location from a sample suspected of including explosives with ultraviolet, visible or infrared light, measuring reflected light emanated from the first sample location (R1) and reflected light emanated from the second sample location (R2), and calculating a normalized difference in reflectivity (ΔR/ R), wherein R=(R1+R2)/2 is an average reflectivity. A differential reflection spectrum (DRS) is then generated for the sample where ΔR=R2−R1 is the difference of the reflectivities of the first and the second sample location. One or more explosives if present are identified in the sample based on comparing the DRS for said sample to at least one reference DRS.
摘要翻译:用于识别爆炸物或其他目标材料的系统和方法包括以下步骤:将与第一位置隔开的第一位置和与怀疑包括具有紫外线,可见光或红外光的爆炸物的样品的第二位置照射,测量从 第一采样位置(R 1> 1)和从第二采样位置(R 2> 2发出)的反射光,并计算归一化反射率差(ΔR/ O OYYLE =“ 其中 R =(R 1 + R 2/2)/ 2是平均反射率。 然后为样品产生差分反射光谱(DRS),其中ΔR= R 2 -R 1 1是第一和第二样品位置的反射率的差。 基于将所述样品的DRS与至少一个参考DRS进行比较,在样品中鉴定存在的一种或多种爆炸物。
摘要:
An imaging device (30) can include a plurality of lenses (51, 52, 53, 54) mounted on a multi-dimensional support structure (32), a plurality of optical detectors (40) corresponding to the plurality of lenses for capturing an optical signal from at least two lenses among the plurality of lenses, and a processor (34) for combining the optical signal from at least two lenses to form an image and electronically controlling the field of view and a resolution of the image. The plurality of lenses each can include an array of sub-wavelength apertures or a plurality of photon sieve lenses (36).
摘要:
The application relates to a needle protection assembly (1) comprising:—a supporting element (18) and a needle shield (8),—one locking element (20) located within said needle protection assembly (1) and not accessible to the user,—urging means (24) for displacing said needle shield (8),—a peg (19) located on said supporting element (18) or on said needle shield (8), and a cam (9) located on said needle shield (8) or on said supporting element (18), and—said locking element (20) is not formed by said peg (19) and cam (9). The respective longitudinal axis of the needle shield (8) and of the locking element (20) are merged when said needle shield (8) is in its before use or in use positions, and they form an angle (a) when said needle shield (8) is in its after use position.
摘要:
A partially passivating core shell particle includes a luminescent nanocrystal core, and a partially passivating semiconducting core shell on a surface of the nanocrystal. The shell allows selected analytes to alter a luminescent response of the core shell particle. A quantum dot-based sensing system includes at least one partially passivating core shell particle, a light source for irradiating the partially passivating core shell particle, and a light detector for receiving emissions from the particle, wherein emissions from the core shell particle change in response to the presence of at least one analyte.