摘要:
A method for enhancing signal routability within an integrated circuit is provided. The method initiates with examining an outer edge of a sequence of logical array blocks. The method includes identifying an undriven routing wire in a vicinity of the outer edge. An underutilized driver proximate to the undriven routing wire is also identified. Then, the underutilized driver is coupled to the undriven routing wire. A computer readable medium and an integrated circuit are also provided.
摘要:
A programmable logic device and associated method is provided with repairable regions. In one aspect, general routing interconnect lines are segmented within repairable regions. In another aspect, IO bus lines and associated circuitry are provided that accommodate redundancy in a staggered segmented architecture. In another aspect, a dedicated routing architecture between particular logic regions accommodates shifting to define and utilize repairable regions. Principles of other aspects are illustrated and described in the context of several exemplary embodiments of aspects of the invention.
摘要:
Configurable time-borrowing flip-flops may be based on configurable pulse generation circuitry and pulse latches. The circuitry may use a self-timed architecture that controls the width of clock pulses that are generated so that the pulse latches that are controlled by the clock pulses exhibit a reduced risk of race through conditions. Latch circuitry may be provided that is based on a pulse latch and an additional latch connected in series with the pulse latch. In situations in which there is a potential for race through conditions on an integrated circuit, the additional latch may be switched into use to convert the latch circuitry into an edge-triggered flip flop. Clock trees may be provide with configurable shorting structures that help to reduce clock skew. Low-contention clock drivers may drive signals onto the clock tree paths.
摘要:
A PLD with LAB interconnect lines that span adjacent LABs in the array and that have the ability to interconnect two logic elements in the different LABs. The PLD includes a plurality of LABs arranged in an array and a plurality of inter-LAB lines interconnecting the LABs of the array. Each of the LABs include a predetermined number of logic elements, one or more control signals distributed among the predetermined number of logic elements in the LAB, and LAB lines spanning between logic elements in different LABs in the array. In various embodiments, the LAB lines are arranged in a staggered pattern with a predetermined pitch between the lines. In other embodiments, the control signals of adjacent LABs can overlap, allowing control signals to be routed to the logic elements of adjacent LABs.
摘要:
A programmable logic device (PLD) includes a plurality of logic array blocks (LAB's) connected by a PLD routing architecture. At least one LAB includes a logic element (LE) configurable to arithmetically combine a plurality of binary input signals in a plurality of stages. The LE comprises look-up table (LUT) logic having K inputs (a “K-LUT”). The K-LUT is configured to input the binary input signals at respective inputs of the K-LUT logic cell and to provide, at a plurality of outputs of the K-LUT logic cell, respective binary result signals indicative of at least two of the plurality of stages of the arithmetic combination of binary input signals. An input line network includes a network of input lines, the input lines configurable to receive input signals from the PLD routing architecture that represent the binary input signals and to provide the input signals to the K-LUT. An output line network includes a network of output lines, the output lines configured to receive, from the K-LUT, output signals that represent the binary result signals and to provide the output signals to the PLD routing architecture. The described LUT's can perform arithmetic efficiently, as well as non-arithmetic functions.
摘要:
A programmable logic region on a programmable integrated circuit may include a first set of look-up tables that receive programmable logic region input signals and a second set of look-up tables that produce programmable logic region output signals. Multiplexer circuitry may be interposed between the first and second sets of look-up tables. The multiplexer circuitry may receive the programmable logic region input signals in parallel with the output signals from the first set of look-up tables and may provide corresponding selected signals to the second set of look-up tables. The programmable logic region input signals may be shared by the first and second sets of look-up tables. Logic circuitry may be coupled to outputs of the first and second sets of look-up tables. The logic circuitry may be configured to logically combine output signals from the first and second sets of look-up tables.
摘要:
Configurable time-borrowing flip-flops are provided for circuits such as programmable logic devices. The flip-flops may be based on a configurable delay circuit and two latches or may be based on a configurable pulse generation circuit and a single latch. In designs based on two latches, a first and a second latch are arranged in series. A clock signal is delayed using a configurable delay circuit. Programmable memory elements that have been loaded with configuration data may be used to adjust how much delay is produced by the configurable delay circuit. The delayed version of the clock signal is provided to a clock input associated with the first latch. The second latch has a clock input that receives the clock signal without delay. In designs based on a single latch, a configurable pulse generation circuit receives a clock signal for the flip-flop and generates a corresponding clock pulse for the latch.
摘要:
Configurable time-borrowing flip-flops are provided for circuits such as programmable logic devices. The flip-flops may be based on a configurable delay circuit and two latches or may be based on a configurable pulse generation circuit and a single latch. In designs based on two latches, a first and a second latch are arranged in series. A clock signal is delayed using a configurable delay circuit. Programmable memory elements that have been loaded with configuration data may be used to adjust how much delay is produced by the configurable delay circuit. The delayed version of the clock signal is provided to a clock input associated with the first latch. The second latch has a clock input that receives the clock signal without delay. In designs based on a single latch, a configurable pulse generation circuit receives a clock signal for the flip-flop and generates a corresponding clock pulse for the latch.
摘要:
Configurable time-borrowing flip-flops are provided for circuits such as programmable logic devices. The flip-flops may be based on a configurable delay circuit and two latches or may be based on a configurable pulse generation circuit and a single latch. In designs based on two latches, a first and a second latch are arranged in series. A clock signal is delayed using a configurable delay circuit. Programmable memory elements that have been loaded with configuration data may be used to adjust how much delay is produced by the configurable delay circuit. The delayed version of the clock signal is provided to a clock input associated with the first latch. The second latch has a clock input that receives the clock signal without delay. In designs based on a single latch, a configurable pulse generation circuit receives a clock signal for the flip-flop and generates a corresponding clock pulse for the latch.
摘要:
Configurable time-borrowing flip-flops may be based on configurable pulse generation circuitry and pulse latches. The circuitry may use a self-timed architecture that controls the width of clock pulses that are generated so that the pulse latches that are controlled by the clock pulses exhibit a reduced risk of race through conditions. Latch circuitry may be provided that is based on a pulse latch and an additional latch connected in series with the pulse latch. In situations in which there is a potential for race through conditions on an integrated circuit, the additional latch may be switched into use to convert the latch circuitry into an edge-triggered flip flop. Clock trees may be provide with configurable shorting structures that help to reduce clock skew. Low-contention clock drivers may drive signals onto the clock tree paths.