摘要:
A method and apparatus for performing microbial antibiotic susceptibility testing include disposable, multi-chambered susceptibility plates and an automated plate handler and image acquisition and processing instrument is described. The susceptibility plates are inoculated with a suitable microorganism such as bacteria, fungi, protozoa, algae or viruses and anti-microbial agent(s) are applied that the microorganism is exposed to at a variety of concentrations or a gradient of each anti-microbial agent. The plates are then placed in the instrument, which monitors and measures the growth or lack thereof of the microorganisms. This data is used to determine the susceptibility of the microorganism to the antibiotics. Such a system automates anti-microbial susceptibility testing using solid media and Carbo-Bauer standardized result reporting. The system provides a level of automation previously associated only with broth micro dilution testing, while retaining the advantages of the manual disk diffusion test.
摘要:
Disposable plates for performing microbial antibiotic susceptibility testing with multiple channels can be inoculated with a microorganism and antimicrobial agent. The antimicrobial agent may be presented as a gradient of concentrations in the plate. The susceptibility testing plates are configured to allow viewing of microbial growth, and/or to be received in an automated instrument which analyzes same.
摘要:
A method and apparatus for performing microbial antibiotic susceptibility testing include disposable, multi-chambered susceptibility plates and an automated plate handler and image acquisition and processing instrument. The susceptibility plates are inoculated with a microorganism (any suitable organism such as bacteria, fungi, protozoa, algae or viruses) and anti-microbial agent(s) are applied such that the microorganism is exposed to a variety of concentrations, or a gradient of each anti-microbial agent. The plates are then placed in the instrument, which monitors and measures the growth (or lack thereof) of the microorganisms. This data is used to determine the susceptibility of the microorganism to the antibiotics. Such a system automates antimicrobial susceptibility testing using solid media and Kirby-Bauer standardized result reporting. The system provides a level of automation previously associated only with broth microdilution testing, while retaining the advantages of the manual disk diffusion test.
摘要:
A device and method are provided for isolating and culturing microorganisms from a bulk fluid sample. The device comprises a container having therein a polymeric immobilization layer having interstitial spaces between polymer chains such as a gel matrix. The interstitial spaces are of an average size less than an average size of microorganisms to be separated from the sample and cultured. A bulk fluid sample is applied to the immobilization layer where fluid is absorbed by the layer and microorganisms remain on the surface of the layer. After culturing, microorganism colonies are readily accessible on the surface of the layer for harvest and testing. The immobilization layer may contain one or more of nutrients for microorganisms growth, lytic agents, lytic enzymes, antibiotics, antibiotic neutralizers, indicators, detergents and selective agents. An adjacent support layer may be above and/or below the immobilization layer. The immobilization layer may be in combination with a sensor layer that changes color in areas corresponding to portions of the layer having microorganisms thereon. A membrane may be embedded in the immobilization layer for enhancing microorganism visibility and facilitating microorganism harvest.
摘要:
A device and method allow for detecting the presence of microorganisms in clinical and non-clinical specimens. The device, a sensor, provides an environment to culture microbial organism colonies from a fluid sample, and a means to facilitate microbial detection and quantification, either manually or with an instrument. The sensor has a microorganism immobilization matrix layer and a sensor layer. Detected microbial colonies are immediately available for further testing. The sensor provides an area for accepting a fluid sample, a mechanism to immobilize the fluid sample on an interior surface of the plate, nutrients to facilitate growth of microorganisms in the sample, and a sensor for allowing the detection and/or enumeration of microorganism colonies within the sample.
摘要:
A device and method allow for detecting the presence of microorganisms in clinical and non-clinical specimens. The device, a sensor, provides an environment to culture microbial organism colonies from a fluid sample, and a means to facilitate microbial detection and quantification, either manually or with an instrument. The sensor has a microorganism immobilization matrix layer and a sensor layer. Detected microbial colonies are immediately available for further testing. The sensor provides an area for accepting a fluid sample, a mechanism to immobilize the fluid sample on an interior surface of the plate, nutrients to facilitate growth of microorganisms in the sample, and a sensor for allowing the detection and/or enumeration of microorganism colonies within the sample.
摘要:
A device and method are provided for isolating and culturing microorganisms from a bulk fluid sample. The device comprises a container having therein a polymeric immobilization layer having interstitial spaces between polymer chains such as a gel matrix. The interstitial spaces are of an average size less than an average size of microorganisms to be separated from the sample and cultured. A bulk fluid sample is applied to the immobilization layer where fluid is absorbed by the layer and microorganisms remain on the surface of the layer. After culturing, microorganism colonies are readily accessible on the surface of the layer for harvest and testing. The immobilization layer may contain one or more of nutrients for microorganism growth, lytic agents, lytic enzymes, antibiotics, antibiotic neutralizers, indicators, detergents and selective agents. An adjacent support layer may be above and/or below the immobilization layer. The immobilization layer may be in combination with a sensor layer that changes color in areas corresponding to portions of the layer having microorganisms thereon. A membrane may be embedded in the immobilization layer for enhancing microorganism visibility and facilitating microorganism harvest.
摘要:
A device and method allow for detecting the presence of microorganisms in clinical and non-clinical specimens. The device, a sensor, provides an environment to culture microbial organism colonies from a fluid sample, and a means to facilitate microbial detection and quantification, either manually or with an instrument. The sensor has a microorganism immobilization matrix layer and a sensor layer. Detected microbial colonies are immediately available for further testing. The sensor provides an area for accepting a fluid sample, a mechanism to immobilize the fluid sample on an interior surface of the plate, nutrients to facilitate growth of microorganisms in the sample, and a sensor for allowing the detection and/or enumeration of microorganism colonies within the sample.