摘要:
An NVM cell design enables direct reading of cell output voltage to determine data stored in the cell, while providing low current consumption and a simple program sequence that utilizes reverse Fowler-Nordheim tunneling.
摘要:
An NVM cell design enables direct reading of cell output voltage to determine data stored in the cell, while providing low current consumption and a simple program sequence that utilizes reverse Fowler-Nordheim tunneling.
摘要:
A non-volatile memory (NVM) cell structure comprises an NMOS control transistor having source, drain and bulk region electrodes that are commonly-connected to receive a control voltage and a gate electrode that is connected to a data storage node; a PMOS erase transistor having source, drain and bulk region electrodes that are commonly-connected to receive an erase voltage and a gate electrode that is connected to the data storage node; and an NMOS data transistor having source, drain and bulk region electrodes and a gate electrode connected to the data storage node.
摘要:
A non-volatile memory (NVM) cell comprises an NMOS control transistor having commonly-connected source, drain and bulk region electrodes and a gate electrode connected to a storage node; a PMOS erase transistor having commonly-connected source, drain and bulk region electrodes and a gate electrode connected to the storage node; an NMOS data transistor having source, drain and bulk region electrodes and a gate electrode connected to the storage node, the bulk region electrode being connected to a common bulk node; the first NMOS pass gate transistor having a source electrode connected to the drain electrode of the NMOS data transistor, a drain electrode, a bulk region electrode connected to the common bulk node, and a gate electrode; and a second NMOS pass gate transistor having a drain electrode connected to the source electrode of the NMOS data transistor, a source electrode, a bulk region electrode connected to the common bulk node, and a gate electrode.
摘要:
A non-volatile memory cell includes NMOS programming, read, erase, and control transistors having gate electrodes connected to a storage node. The erase and control transistors have interconnected source, drain, and bulk electrodes. The cell is programmed by setting source, drain, bulk, and gate electrodes of all transistors to a positive voltage. An inhibiting voltage is applied to source, drain, and bulk electrodes of the read transistor, while setting source and drain electrodes of the programming transistor to the positive voltage and the bulk electrode of the programming transistor to the positive voltage or the inhibiting voltage. Source, drain, and bulk electrodes of the control transistor are then ramped to a negative control voltage while ramping source, drain, and bulk electrodes of the erase transistor to a negative erase voltage and then back to the positive voltage. Source, drain. bulk, and gate electrodes of the programming, erase, and control transistors are then returned to the positive voltage, while setting the source, drain, and bulk electrodes of the read transistor to the inhibiting voltage.
摘要:
A ROM array which provides for reduced size and power consumption. The bit cell of the ROM provides that a first type of information is stored in the bit cell when a transistor is disposed between a bit line and a word line, and a second type of information is stored in the cell when no transistor is disposed between the bit line and the word line. In the bit cell a contact between a bit line and a region where a transistor drain can be formed in a substrate is provided in those instances when a transistor is formed between the bit line and a word line. In those instances when a bit cell provides no transistors between the word line and the bit line, no contact is provided between the bit line and the region where a transistor drain can be formed. Further, where a bit cell does not provide a transistor between the bit line and the word line a bit cell region in the substrate can consist substantially of an isolating dielectric material.
摘要:
A non-volatile memory (NVM) cell structure comprises a PMOS program transistor having source, drain and bulk region electrodes and a gate electrode that is connected to a data storage node; an NMOS control transistor having source, drain and bulk region electrodes that are commonly-connected to receive a control voltage and a gate electrode that is connected to the data storage node; a PMOS erase transistor having source, drain and bulk region electrodes that are commonly-connected to receive an erase voltage and a gate electrode that is connected to the data storage node; and an NMOS read transistor having source, drain and bulk region electrodes and a gate electrode connected to the data storage node.
摘要:
A non-volatile memory (NVM) cell structure comprises a PMOS program transistor having source, drain and bulk region electrodes and a gate electrode that is connected to a data storage node; an NMOS control transistor having source, drain and bulk region electrodes that are commonly-connected to receive a control voltage and a gate electrode that is connected to the data storage node; a PMOS erase transistor having source, drain and bulk region electrodes that are commonly-connected to receive an erase voltage and a gate electrode that is connected to the data storage node; and an NMOS read transistor having source, drain and bulk region electrodes and a gate electrode connected to the data storage node.
摘要:
In a ROM structure, power consumption is reduced by providing for pre-discharging of only the bit line corresponding to the memory location that is being read. Column select lines are coupled to logic to switch in a pre-discharging circuit prior to reading, and to disconnect, from the pre-discharging circuit during reading, only the bit line corresponding to the memory location being read.
摘要:
A single 4-transistor non-volatile memory (NVM) cell includes a shared static random access memory cell. The NVM cell utilizes a reverse Fowler-Nordheim tunneling programming technique that, in combination with the shared SRAM cell structure, allows an entire cell array to be programmed at two cycles. A single NVM cell approach with shared SRAM allows a 50% area reduction with an insignificant increase in program time.