摘要:
Embodiments of the present invention enable robust and quick parallel detection of the remote LPI request signal (rem_lpi_req) and SEND ZERO mode (SEND_Z) defined in the Energy Efficient Ethernet (EEE) standard. Embodiments do not rely on energy detection for detecting SEND_Z. Therefore, SEND_Z can be detected reliably and with minimal latency. In addition, since SEND_Z and rem_lpi_req are detected in parallel, embodiments are not concerned with the false detection of rem_lpi_req (before SEND_Z is detected) or the need to disable detection of rem_lpi_req (after SEND_Z is detected).
摘要:
An Ethernet PHY may receive an indication from a local timing source that a local clock is suitable for propagation to a link partner. In response, a timer in the Ethernet PHY may be started. In instances that the Ethernet PHY receives, during a time period subsequent to starting the timer and before the timer reaches a predetermined value, an indication that the link partner is propagating a clock that is suitable for the Ethernet PHY to synchronize to, the Ethernet PHY may be configured as timing slave. In instances that the Ethernet PHY does not receive, during the time period subsequent to starting the timer and before the timer reaches a predetermined value, an indication that the link partner is propagating a clock that is suitable for the Ethernet PHY to synchronize to, Ethernet PHY may be configured as timing master upon the timer reaching the predetermined value.
摘要:
An Ethernet PHY may receive an indication from a local timing source that a local clock is suitable for propagation to a link partner. In response, a timer in the Ethernet PHY may be started. In instances that the Ethernet PHY receives, during a time period subsequent to starting the timer and before the timer reaches a predetermined value, an indication that the link partner is propagating a clock that is suitable for the Ethernet PHY to synchronize to, the Ethernet PHY may be configured as timing slave. In instances that the Ethernet PHY does not receive, during the time period subsequent to starting the timer and before the timer reaches a predetermined value, an indication that the link partner is propagating a clock that is suitable for the Ethernet PHY to synchronize to, Ethernet PHY may be configured as timing master upon the timer reaching the predetermined value.
摘要:
A first PHY may be coupled to a second PHY via a network link. The first PHY may transition from a role of timing master for the network link to a role of timing slave for the network link. During a first time interval subsequent to the transition, the PHYs may communicate half-duplex over the link while the first PHY synchronizes to a transmit clock of the second PHY. During a second time interval, the PHYs may communicate full-duplex while the second Ethernet PHY synchronizes to a transmit clock of the first PHY. Also during the second time interval, the first PHY may determine that the first PHY and the second PHY are synchronized. Subsequent to the determination, the PHYs may begin full-duplex communication of data on the network link.
摘要:
Aspects of a method and system for physical-layer handshaking for timing role transition are provided. Prior to changing the timing role of a first Ethernet device, the first Ethernet device may communicate over an Ethernet link to a second Ethernet PHY utilizing a first set of one or more PCS code-groups. In response to a determination to change the timing role of the first Ethernet device, the first Ethernet device may communicate one or more IDLE symbols over the Ethernet link to the second Ethernet device. The IDLE symbol(s) may be generated utilizing a second set of one or more PCS code-groups. The first set of PCS code-group(s) may be mutually exclusive with the second set of PCS code-group(s). In response to detecting a received Ethernet physical layer symbol corresponding to the second set of PCS code-groups, the second Ethernet device may make a determination to change its timing role.
摘要:
A first PHY may be coupled to a second PHY via a network link. The first PHY may transition from a role of timing master for the network link to a role of timing slave for the network link. During a first time interval subsequent to the transition, the PHYs may communicate half-duplex over the link while the first PHY synchronizes to a transmit clock of the second PHY. During a second time interval, the PHYs may communicate full-duplex while the second Ethernet PHY synchronizes to a transmit clock of the first PHY. Also during the second time interval, the first PHY may determine that the first PHY and the second PHY are synchronized. Subsequent to the determination, the PHYs may begin full-duplex communication of data on the network link.
摘要:
A structured interleaving/de-interleaving scheme enables efficient implementation of encoding/decoding based on two-dimensional product codes (2D PC). An encoder has an integrated architecture that performs structured interleaving and PC coding in an integrated manner in which locations in the interleaved data stream are related to row and column indices for the 2D PC coding based on closed-form expressions. In one embodiment, a corresponding decoder implements two-stage low-density parity-check (LDPC) decoding based on the same relationships between locations in the interleaved data stream and row and column indices for the LDPC decoding.
摘要:
Embodiments of the invention include a method and apparatus for encoding data and a system for transmitting and/or storing data, in which the data is encoded and precoded in a manner that does not violate previously established data constraints, such as modulation encoding constraints. The method includes the steps of modulation encoding the data using a modulation code defined by at least one modulation constraint, parity encoding the modulation encoded information, and preceding the encoded information. The preceding step either partially precodes information bits and precodes parity bits, precodes information bits but not parity bits, or precodes both information bits and parity bits in such a manner that does not violate modulation constraints. Also, the parity encoding step can be performed in such a manner that does not violate modulation code constraints.
摘要:
A structured interleaving/de-interleaving scheme enables efficient implementation of encoding/decoding based on two-dimensional product codes (2D PC). In one embodiment, an encoder has an integrated architecture that performs structured interleaving and PC coding in an integrated manner in which locations in the interleaved data stream are related to row and column indices for the 2D PC coding based on closed-form expressions. A corresponding decoder implements two-stage low-density parity-check (LDPC) decoding based on the same relationships between locations in the interleaved data stream and row and column indices for the LDPC decoding.
摘要:
A structured interleaving/de-interleaving scheme enables efficient implementation of encoding/decoding based on two-dimensional product codes (2D PC). An encoder has an integrated architecture that performs structured interleaving and PC coding in an integrated manner in which locations in the interleaved data stream are related to row and column indices for the 2D PC coding based on closed-form expressions. In one embodiment, a corresponding decoder implements two-stage low-density parity-check (LDPC) decoding based on the same relationships between locations in the interleaved data stream and row and column indices for the LDPC decoding.