摘要:
Disclosed herein are implantable medical devices having controlled release biodegradable polymer coatings thereon wherein the polymer is formed from ring opening of γ-butyrolactone and at least one additional monomer selected from the group consisting of trimethylene carbonate, lactide, polyethylene glycol, glycolide, the monomers formed from ring opening of ε-caprolactone, 4-tert-butyl caprolactone, and N-acetyl caprolactone, and combinations thereof, and at least one drug releasable from the biodegradable polymer. Also disclosed are implantable medical devices form of the biodegradable polymers and processes for forming the polymers.
摘要:
Disclosed herein are biodegradable modified caprolactone polymers for coating and forming medical devices. The properties of the polymers are fine tuned for optimal performance depending on the medical purpose. Moreover, the polymers are suitable for the controlled in situ release of drugs at the treatment site.
摘要:
Disclosed herein are implantable medical devices having controlled release biodegradable polymer coatings thereon wherein the polymer is formed from ring opening of γ-butyrolactone and at least one additional monomer selected from the group consisting of trimethylene carbonate, lactide, polyethylene glycol, glycolide, the monomers formed from ring opening of ε-caprolactone, 4-tert-butyl caprolactone, and N-acetyl caprolactone, and combinations thereof, and at least one drug releasable from the biodegradable polymer. Also disclosed are implantable medical devices form of the biodegradable polymers and processes for forming the polymers.
摘要:
Disclosed herein are biodegradable modified caprolactone polymers for coating and forming medical devices. The properties of the polymers are fine tuned for optimal performance depending on the medical purpose. Moreover, the polymers are suitable for the controlled in situ release of drugs at the treatment site.
摘要:
Disclosed herein are implantable medical devices having controlled release biodegradable polymer coatings thereon wherein the polymer is formed from ring opening of γ-butyrolactone and at least one additional monomer selected from the group consisting of trimethylene carbonate, lactide, polyethylene glycol, glycolide, the monomers formed from ring opening of ε-caprolactone, 4-tert-butyl caprolactone, and N-acetyl caprolactone, and combinations thereof, and at least one drug releasable from the biodegradable polymer. Also disclosed are implantable medical devices form of the biodegradable polymers and processes for forming the polymers.
摘要:
Disclosed in the present invention are biodegradable biocompatible amphiphilic copolymers for coating and manufacturing medical devices. The properties of the polymers in the present invention are fine tuned for optimal performance depending on the medical purpose. Moreover, the polymers of the present invention retain and release bioactive drugs in a controlled manner.
摘要:
Disclosed are implantable medical devices comprising nitric oxide (NO) donating polymers comprising polymer backbones having at least one cyclic amine disposed thereon. Methods are further disclosed for providing nitric oxide-donating polymers.
摘要:
Biocompatible coatings for medical devices are disclosed. Specifically, polymer coatings designed to control the release of bioactive agents from medical devices in vivo are disclosed wherein the solubility parameters of polymers and drugs are closely matched to control elute rate profiles. The present application also discloses providing vascular stents with controlled release coatings and related methods for making these coatings.
摘要:
The present disclosure in a broad aspect provides for diazeniumdiolated phosphorylcholine polymers and associated methods for achieving nitric oxide release. The present polymers have superior biocompatibility and are useful for coating or fabricating medical devices such as a vascular stent.
摘要:
Disclosed herein are implantable medical devices comprising controlled release terpolymers and at least one drug releasable from said terpolymers coating. The terpolymers of the present invention are comprised of acrylate and/or vinyl monomers.