Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. Lens stack arrays in accordance with many embodiments of the invention include lens elements formed on substrates separated by spacers, where the lens elements, substrates and spacers are configured to form a plurality of optical channels, at least one aperture located within each optical channel, at least one spectral filter located within each optical channel, where each spectral filter is configured to pass a specific spectral band of light, and light blocking materials located within the lens stack array to optically isolate the optical channels.
Abstract:
Systems and methods in accordance with embodiments of the invention implement one-dimensional array cameras, as well as modular array cameras using sub-array modules. In one embodiment, a 1×N array camera module includes: a 1×N arrangement of focal planes, where N is greater than or equal to 2, each focal plane includes a plurality of rows of pixels that also form a plurality of columns of pixels, and each focal plane not including pixels from another focal plane; and a 1×N arrangement of lens stacks, the arrangement of lens stacks being disposed relative to the arrangement of focal planes so as to form a 1×N arrangement of cameras, each configured to independently capture an image of a scene, where each lens stack has a field of view that is shifted with respect to that of each other lens stack so that each shift includes a sub-pixel shifted view of the scene.
Abstract:
A variety of optical arrangements and methods of modifying or enhancing the optical characteristics and functionality of these optical arrangements are provided. The optical arrangements being specifically designed to operate with camera arrays that incorporate an imaging device that is formed of a plurality of imagers that each include a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers.
Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.
Abstract:
Systems and methods for detecting defective camera arrays, optic arrays and/or sensors are described. One embodiment includes capturing image data using a camera array; dividing the captured images into a plurality of corresponding image regions; identifying the presence of localized defects in any of the cameras by evaluating the image regions in the captured images; and detecting a defective camera array using the image processing system when the number of localized defects in a specific set of image regions exceeds a predetermined threshold, where the specific set of image regions is formed by: a common corresponding image region from at least a subset of the captured images; and any additional image region in a given image that contains at least one pixel located within a predetermined maximum parallax shift distance along an epipolar line from a pixel within said common corresponding image region within the given image.
Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.
Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.
Abstract:
Systems and methods in accordance with embodiments of the invention implement modular array cameras using sub-array modules. In one embodiment, an X×Y sub-array module includes: an X×Y arrangement of focal planes, where X and Y are each greater than or equal to 1; and an X×Y arrangement of lens stacks, the X×Y arrangement of lens stacks being disposed relative to the X×Y arrangement of focal planes so as to form an X×Y arrangement of cameras, where each lens stack has a field of view that is shifted with respect to the field-of-views of each other lens stack so that each shift includes a sub-pixel shifted view of the scene; and image data output circuitry that is configured to output image data from the X×Y sub-array module that can be aggregated with image data from other sub-array modules so that an image of the scene can be constructed.
Abstract:
Systems and methods for detecting defective camera arrays, optic arrays and/or sensors are described. One embodiment includes capturing image data using a camera array; dividing the captured images into a plurality of corresponding image regions; identifying the presence of localized defects in any of the cameras by evaluating the image regions in the captured images; and detecting a defective camera array using the image processing system when the number of localized defects in a specific set of image regions exceeds a predetermined threshold, where the specific set of image regions is formed by: a common corresponding image region from at least a subset of the captured images; and any additional image region in a given image that contains at least one pixel located within a predetermined maximum parallax shift distance along an epipolar line from a pixel within said common corresponding image region within the given image.
Abstract:
Systems and methods in accordance with embodiments of the invention actively align a lens stack array with an array of focal planes to construct an array camera module. In one embodiment, a method for actively aligning a lens stack array with a sensor that has a focal plane array includes: aligning the lens stack array relative to the sensor in an initial position; varying the spatial relationship between the lens stack array and the sensor; capturing images of a known target that has a region of interest using a plurality of active focal planes at different spatial relationships; scoring the images based on the extent to which the region of interest is focused in the images; selecting a spatial relationship between the lens stack array and the sensor based on a comparison of the scores; and forming an array camera subassembly based on the selected spatial relationship.