Abstract:
A spatial frequency optical measurement instrument is provided according to the invention. The instrument includes a spatial frequency mask positioned in a light path and configured to encode light with spatial frequency information, a light receiver positioned to receive the light encoded with the spatial frequency information, wherein the light encoded with the spatial frequency information has been interacted with a sample material, and a processing system coupled to the light receiver and configured to determine a change in the spatial frequency information due to the interaction of the light with the sample material.
Abstract:
A spatial frequency optical measurement instrument is provided according to the invention. The instrument includes a spatial frequency mask positioned in a light path and configured to encode light with spatial frequency information, a light receiver positioned to receive the light encoded with the spatial frequency information, wherein the light encoded with the spatial frequency information has been interacted with a sample material, and a processing system coupled to the light receiver and configured to determine a change in the spatial frequency information due to the interaction of the light with the sample material.
Abstract:
Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can be configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
Abstract:
Embodiments of the present invention include a backscatter reductant anamorphic beam sampler. The beam sampler can be implemented to measure a power of a reference beam generated by an electromagnetic radiation source in proportion to a power of a working beam. The beam sampler can provide astigmatic correction to a divergence of the working beam along one axis orthogonal to a direction of propagation. The beam sampler can further be implemented to prevent backscatter from impinging upon a photodetector of the beam sampler resulting in a reduction of error and instability in measurements taken by the beam sampler.
Abstract:
Embodiments of the present invention include a backscatter reductant anamorphic beam sampler. The beam sampler can be implemented to measure a power of a reference beam generated by an electromagnetic radiation source in proportion to a power of a working beam. The beam sampler can provide astigmatic correction to a divergence of the working beam along one axis orthogonal to a direction of propagation. The beam sampler can further be implemented to prevent backscatter from impinging upon a photodetector of the beam sampler resulting in a reduction of error and instability in measurements taken by the beam sampler.
Abstract:
Method for non-invasive detection of the concentration of a constituent in blood of a living animal includes the steps of irradiating a body part of the animal with intensity-modulated radiation over a continuous spectrum; determining the intensity of radiation emitted from the body part at wavelength ranges within the continuous spectrum; and using the determined intensity to calculate the concentration of the constituent. A radiation source including a radiating bulb and a chopper for periodically interrupting radiation emitted from the bulb may be provided.
Abstract:
Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.