摘要:
Numerical image processing based on a model of medical image acquisition of two or more medical images to provide grayscale registration is described. The grayscale registered temporal images may then be displayed for visual comparison and/or further processed by a computer-aided diagnosis system for detection of medical abnormalities therein. A parametric method includes spatially registering two images and performing gray scale registration of the images. A parametric transform model, e.g., analog to analog, digital to digital, analog to digital, or digital to analog model, is selected based on the image acquisition method(s) of the images, i.e., digital or analog/film. Gray scale registration involves generating a joint pixel value histogram from the two images, statistically fitting parameters of the transform model to the joint histogram, generating a lookup table, and using the lookup table to transform and register pixel values of one image to the pixel values of the other image.
摘要:
Simultaneous grayscale and geometric registration of images, such as mammograms, facilitates temporal comparison and enhances the speed and reliability of computer aided diagnosis (CAD) detection of medical abnormalities. The method generally includes optimizing a merit function, e.g., sum of squared errors, containing parameters associated with a transformation function for simultaneous geometric and grayscale registering of the images, the optimizing of the merit function being performed by determining optimal values of the parameters using data in the images and registering one image to the other by applying the geometric and grayscale transformation function using the optimal values of the parameters. The optimizing may be performed iteratively from coarse to fine resolutions using a modified Levenberg-Marquardt method for optimizing nonlinear parameters with linear regression for optimizing linear parameters. A final iteration may be performed after removing pixel value pairs from the images that correspond to outliers of a joint pixel value histogram.
摘要:
Numerical image processing of two or more medical images to provide grayscale registration thereof is described, the numerical image processing algorithms being based at least in part on a model of medical image acquisition. The grayscale registered temporal images may then be displayed for visual comparison by a clinician and/or further processed by a computer-aided diagnosis (CAD) system for detection of medical abnormalities therein. A parametric method includes spatially registering two images and performing gray scale registration of the images. A parametric transform model, e.g., analog to analog, digital to digital, analog to digital, or digital to analog model, is selected based on the image acquisition method(s) of the images, i.e., digital or analog/film. Gray scale registration involves generating a joint pixel value histogram from the two images, statistically fitting parameters of the transform model to the joint histogram, generating a lookup table, and using the lookup table to transform and register pixel values of one image to the pixel values of the other image. The models take into account the most relevant image acquisition parameters that influence pixel value differences between images, e.g., tissue compression, incident radiation intensity, exposure time, film and digitizer characteristic curves for analog image, and digital detector response for digital image. The method facilitates temporal comparisons of medical images such as mammograms and/or comparisons of analog with digital images.
摘要:
Methods and related systems provide an interactive user interface in which CAD results are displayed in such a way that they may be used for both interpretation of detected abnormalities and for avoiding perceptual oversights. The output of a (multi-view) computer aided detection system is presented to the reader of a screening case in two phases: (1) an interactive phase, and (2) a prompting phase. In the first phase the reader can probe image locations for CAD information. In the second phase regions identified as relevant by the CAD system and not yet probed by the reader are prompted or displayed to the user, as these may have been overlooked by the reader. The CAD results can be calibrated to a probability of malignancy.
摘要:
Disclosed is a method of analyzing tissue from an image comprising providing an electronic image of tissue (100, 400, 450, 600, 800, 1100), determining a reference value from the image (1070, 1170, 1270), establishing an hint representation (500,700) of the image, and using the hint representation in analysis of the tissue to quantify the breast and compute a calibration error. Also disclosed is a system which runs an inner breast edge detection algorithm (1310) on the electronic image to detect the inner breast edge on the image (1315), and refined the inner breast edge location (1340) if a calibration error is not acceptable (1324). Also disclosed is automatic estimation of breast composition and temporal analysis of images.
摘要:
Disclosed is a method of analysing tissue from an image comprising providing an electronic image of tissue (100, 400, 450, 600, 800, 1100), determining a reference value from the image (1070, 1170, 1270), establishing an hint representation (500,700) of the image, and using the hint representation in analysis of the tissue to quantify the breast and compute a calibration error. Also disclosed is a system which runs an inner breast edge detection algorithm (1310) on the electronic image to detect the inner breast edge on the image (1315), and refined the inner breast edge location (1340) if a calibration error is not acceptable (1324). Also disclosed is automatic estimation of breast composition and temporal analysis of images.
摘要:
A method and system for processing and displaying breast ultrasound information is described. A 2D feature weighted volumetric coronal image as a “guide” or “road map” is generated from the 3D ultrasound data volume to represent the 3D dataset with the goal of emphasizing abnormalities within the breast while excluding non-breast structures, particularly those external to the breast such as ribs and chest wall.
摘要:
A method, system, and related computer program products for processing and displaying dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) information are described. A plurality of instances of an MRI volume of the body part acquired at a respective plurality of sample times subsequent to an administration of a tracer is processed to determine a plurality of pharmacokinetic (PK) parameters characterizing a mathematical model-based relationship between a plasma tracer concentration and a total tracer concentration within the body part. For one preferred embodiment, computation of the PK parameters is performed according to a generalized signal model such that computation can be carried out in real time during an interactive viewer session, with required reference regions being selectable and optionally re-selectable by the viewer without requiring extensive waiting times for PK parameter computation. Associated user interfaces and computer-aided detection (CAD) algorithms are also provided.
摘要:
The disclosure includes computer implemented methods and devices comprising processors for inputting images and medical history into an electronic medium and analyzing x-ray images of a subject's breasts to determine density. The disclosure further contemplates using these methods and devices to generate a numerical value. The disclosure further contemplates using the numerical value to determine whether the subject should have magnetic resonance imaging of the breasts.
摘要:
Simultaneous grayscale and geometric registration of images, such as mammograms, facilitates temporal comparison and enhances the speed and reliability of computer aided diagnosis (CAD) detection of medical abnormalities. The method generally includes optimizing a merit function, e.g., sum of squared errors, containing parameters associated with a transformation function for simultaneous geometric and grayscale registering of the images, the optimizing of the merit function being performed by determining optimal values of the parameters using data in the images and registering one image to the other by applying the geometric and grayscale transformation function using the optimal values of the parameters. The optimizing may be performed iteratively from coarse to fine resolutions using a modified Levenberg-Marquardt method for optimizing nonlinear parameters with linear regression for optimizing linear parameters. A final iteration may be performed after removing pixel value pairs from the images that correspond to outliers of a joint pixel value histogram.