Abstract:
The present invention provides a method of controlling fluid loss to a permeable formation penetrated by a wellbore. A novel fluid loss agent is prepared by forming a crosslinked polymer gel which then is sheared to break the gel into discrete particles of a particular size range. A slurry then is formed of the particles by dispersing the particles in an aqueous fluid having a density similar to that of the gel particles. The slurry then is introduced into contact with the permeable formation and a filter cake of the particles is formed upon contact with the formation and loss of the slurrying fluid to the formation. The filter cake provides further fluid loss control to the permeable formation.
Abstract:
Methods comprising providing a polymerizable treatment fluid that comprises furfuryl alcohol monomer dispersed in an aqueous base fluid; introducing the polymerizable treatment fluid to a portion of a subterranean formation; and allowing the polymerizable treatment fluid to polymerize in the subterranean formation. The methods may include the use of contacting the furfuryl alcohol with an initiator to begin polymerization.
Abstract:
Methods comprising providing a polymerizable treatment fluid that comprises furfuryl alcohol monomer dispersed in an aqueous base fluid; introducing the polymerizable treatment fluid to a portion of a subterranean formation; and allowing the polymerizable treatment fluid to polymerize in the subterranean formation are disclosed.
Abstract:
A method of preparing high density particulate slurries is provided whereby slurries containing in excess of 23 pounds of particulate per gallon of fluid can be introduced into a subterranean formation. In accordance with the method, a viscosified pad fluid is introduced into a wellbore to create a filter cake in a desired zone within a subterranean formation. The high density slurry then is introduced into the formation to substantially fill any annular space present without significant settling. This permits the coating of the entire exterior surface of highly deviated casing exposed within a wellbore.
Abstract:
Methods of drilling wellbores, placing proppant packs in subterranean formations, and placing gravel packs in wellbores may involve fluids, optionally foamed fluids, comprising nanoparticle suspension aids. Methods may be advantageously employed in deviated wellbores. Some methods may involve introducing a treatment fluid into an injection wellbore penetrating a subterranean formation, the treatment fluid comprising a base fluid, a foaming agent, a gas, and a nanoparticle suspension aid; and producing hydrocarbons from the subterranean formation via a production wellbore proximal to the injection wellbore.
Abstract:
Methods of treating a subterranean formation having at least one fracture including providing a cement slurry comprising an expandable cementitious material and a breakable foamed carrier fluid, wherein the expandable cementitious material is capable of consolidating to form a plurality of expandable cementitious material aggregates and wherein the breakable foamed carrier fluid is capable of coating and isolating the expandable cementitious material aggregates; introducing the cement slurry into the fracture; curing the expandable cementitious material aggregates so as to form a cement pillar within the fracture in the subterranean formation, wherein the curing of the expandable cementitious material aggregates expands the expandable cementitious material aggregates such that at least one microfracture is created within the fracture; breaking the breakable foamed carrier fluid; removing the broken breakable foamed carrier fluid from the subterranean formation; and acid-fracturing the at least one fracture in the subterranean formation.
Abstract:
Methods for enhancing the conductivity of propped fractures in subterranean formations may involve using a tackifier to minimize particulate settling during particulate placement operations in subterranean formations. For example, methods may involve introducing a first treatment fluid into a wellbore extending into a subterranean formation at a pressure sufficient to create or extend at least one fracture in the subterranean formation; and introducing a second treatment fluid into the wellbore at a pressure sufficient to maintain or extend the fracture in the subterranean formation. The first treatment fluid may include at least a first aqueous base fluid and a tackifier. The second treatment fluid may include at least a second aqueous base fluid and a proppant particle.
Abstract:
Consolidation fluids comprising: an aqueous base fluid comprising a hardening agent; an emulsified resin having an aqueous external phase and an organic internal phase; a silane coupling agent; and a surfactant. The consolidation fluid itself may be emulsified and further comprise an emulsifying agent. The consolidation fluid may also be foamed in some cases.
Abstract:
Of the methods provided herein to control particulate migration, one method comprises: providing a portion of a subterranean formation comprising unconsolidated particulates; providing a tacky-consolidate treatment fluid comprising a tackifying compound, a curable resin, and a silane coupling agent; and placing the tacky-consolidate treatment fluid in the subterranean formation so as to form a tacky consolidate that comprises at least a portion of the unconsolidated particulates.