摘要:
A technique has been developed to fabricate micro- or nanopumps based on porous alumina thin films. The main body of the nanopump consists of a porous alumina thin film (containing nano-sized channels of about 40-300 nm in diameter) with conductive surfaces (e.g. Au coating layers) on both sides of the film. Through the fabrication of nanochannels in (the alumina films) and the subsequent annealing and surface activation processes, high-efficiency micro- or nanopumps can be made. The nanofluidic flow through the nanochannels of the alumina thin films is driven by an electric field with no moving parts. The flow rate (up to 50 millilitres/(min·cm2)) of water through the alumina thin film can be continuously tuned through the intensity of the electric field, i.e., the DC electric potential applied across the nanochannels.
摘要:
A technique has been developed to fabricate micro- or nanopumps based on porous alumina thin films. The main body of the nanopump consists of a porous alumina thin film (containing nano-sized channels of about 40-300 nm in diameter) with conductive surfaces (e.g. Au coating layers) on both sides of the film. Through the fabrication of nanochannels in (the alumina films) and the subsequent annealing and surface activation processes, high-efficiency micro- or nanopumps can be made. The nanofluidic flow through the nanochannels of the alumina thin films is driven by an electric field with no moving parts. The flow rate (up to 50 millilitres/(min·cm2)) of water through the alumina thin film can be continuously tuned through the intensity of the electric field, i.e., the DC electric potential applied across the nanochannels.
摘要:
Methods of producing carbon nanostructures utilizing a polymer and a nanostructure template to form carbon nanostructures are disclosed. The method does not require a metal catalyst.
摘要:
Methods of producing carbon nanostructures utilizing a polymer and a nanostructure template to form carbon nanostructures are disclosed. The method does not require a metal catalyst.
摘要:
There is described an electrorheological fluid comprising coated nanoparticle suspended in an electrically insulated hydrophobic liquid. The core particles consist of TiO2 or metal salts of the form M1xM22-2xTiO(C2O4)2 where M1 is selected from the group consisting of Ba, Sr and Ca and wherein M2 is selected from the group consisting of Rb, Li, Na and K. The particle shell is made of highly polar molecules selected from the group consisting of thiourea and urea.
摘要翻译:描述了包含悬浮在电绝缘的疏水性液体中的涂覆的纳米颗粒的电流变流体。 核心颗粒由以下形式组成:TiO 2或金属盐,其形式为M1×M2×2-2×TiO 2(C 2 N 2) 其中M1选自Ba,Sr和Ca,其中M2选自Rb,Li,Na和K 颗粒壳由选自硫脲和尿素的高极性分子制成。
摘要:
There is described an electrorheological fluid comprising coated nanoparticle suspended in an electrically insulated hydrophobic liquid. The core particles consist of TiO2 or metal salts of the form M1xM22-2xTiO(C2O4)2 where M1 is selected from the group consisting of Ba, Sr and Ca and wherein M2 is selected from the group consisting of Rb, Li, Na and K. The particle shell is made of highly polar molecules selected from the group consisting of thiourea and urea.
摘要翻译:描述了包含悬浮在电绝缘的疏水性液体中的涂覆的纳米颗粒的电流变流体。 核心颗粒由以下形式组成:TiO 2或金属盐,其形式为M1×M2×2-2×TiO 2(C 2 N 2) 其中M1选自Ba,Sr和Ca,并且其中M2选自Rb,Li,Na和K 颗粒壳由选自硫脲和尿素的高极性分子制成。
摘要:
There is described an electrorheological fluid comprising particles of a composite material suspended in an electrically insulating hydrophobic liquid. The composite particles are metal salts of the form M1xM22-2xTiO(C2O4)2 where M1 is selected from the group consisting of Ba, Sr and Ca and wherein M2 is selected from the group consisting of Rb, Li, Na and K, and the composite particles further include a promoter selected from the group consisting of urea, butyramide and acetamide.
摘要:
A lithium ion battery is disclosed in which the negative electrode material comprises carbon nanostructures having no dimension greater than 2 μm. The battery has a high reversible capacity of the order of 400 mAh/g to 500 mAh/g which can be maintained over a long cycle-life (at least 30 cycles). The carbon nanostructures may be mixed with graphite to improve conductivity. The carbon nanostructues may be synthesized using an AFI template material followed by calcination.
摘要:
A lithium ion battery is disclosed in which the negative electrode material comprises carbon nanostructures having no dimension greater than 2 μm. The battery has a high reversible capacity of the order of 400 mAh/g to 500 mAh/g which can be maintained over a long cycle-life (at least 30 cycles). The carbon nanostructures may be mixed with graphite to improve conductivity. The carbon nanostructues may be synthesized using an AFI template material followed by calcination.
摘要:
A method for forming carbon nanostructures is disclosed. The method includes the steps of: (a) synthesising a microporous template material comprising crystals having no dimension greater than about 2 μm, (b) heating the crystals in the presence of an inert gas or a mixture of an inert gas and a carbon-containing gas at a temperature of between 500° C. and 900° C., and (c) recovering carbon nanostructures by washing the heated crystals in an acid to remove the template material.