摘要:
Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
摘要:
One or more clocks are synchronized across a communication link using a synchronization signal sent from a master to a slave clock. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate. The synchronization signal receipt time is compared to the expected time and the slave clock is adjusted until the times match. Master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks. The secondary independent clocks may be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
摘要:
Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
摘要:
A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. A best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
摘要:
Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
摘要:
Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
摘要:
Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
摘要:
A baseband simulation system is disclosed for testing an RF subsystem of a communication device, such as a cellular telephone, cordless telephone, etc. A preferred embodiment has a computer connected to an interface card which in turn is connected to a baseband simulation subsystem. The baseband simulation subsystem is connected to the RF subsystem under test. The baseband simulation subsystem includes three ports: a timing and control (TAC) port, an IQ port, and general purpose input output (GPIO) port. The TAC port receives a master clock signal from an external source and generates plural clocks therefrom. The IQ and GPIO ports receives at least one of these plural clocks. In a transmit mode, in response to one or more of the clocks generated by the TAC port, the IQ port retrieves from its memory prestored discrete I and Q samples and reconstructs therefrom arbitrary transmit analog i and q signals which are provided to the RF subsystem under test. In a receive mode, the IQ port receives analog i and q signals from the RF subsystem. The IQ port, in response to one or more clocks generated by the TAC port, converts the received analog i and q signals receive discrete I and Q samples. These receive discrete I and Q samples are transferred via the PCIF to the PC for analyzing the ability of the RF subsystem under test to modulate the inputted transmit analog i and q signals on one or more RF carrier signals and to demodulate the RF carrier signals to output the receive analog i and q signals. The GPIO port exchanges auxiliary discrete data with the PC and auxiliary analog signals with the RF subsystem under test.
摘要:
A soft trellis slicer is provided in a high definition television (HDTV) receiver. The soft trellis slicer calculates a decision value and a confidence value corresponding to a phase angle error of a signal processed by the receiver. The receiver includes an equalizer, a phase tracking loop and a trellis decoder. The equalizer provides an equalized signal to the phase tracking loop; and the phase tracking loop calculates a phase angle error for the equalized signal. The trellis decoder calculates a decision value and a confidence value. The trellis decoder provides the decision value and the confidence value to the phase tracking loop, which calculates the reliability of the phase angle error based upon the phase angle error and the decision value and the confidence value provided by the trellis decoder. The trellis decoder calculates the decision value based upon a best path metric and calculates the confidence value based upon the best path metric and a second best path metric.
摘要:
A baseband simulation system is disclosed for testing an RF subsystem of a communication device, such as a cellular telephone, cordless telephone, etc. A preferred embodiment has a computer connected to an interface card which in turn is connected to a baseband simulation subsystem. The baseband simulation subsystem is connected to the RF subsystem under test. The baseband simulation subsystem includes three ports: a timing and control (TAC) port, an IQ port, and general purpose input output (GPIO) port. The TAC port receives a master clock signal from an external source and generates plural clocks therefrom. The IQ and GPIO ports receives at least one of these plural clocks. In a transmit mode, in response to one or more of the clocks generated by the TAC port, the IQ port retrieves from its memory prestored discrete I and Q samples and reconstructs therefrom arbitrary transmit analog i and q signals which are provided to the RF subsystem under test. In a receive mode, the IQ port receives analog i and q signals from the RF subsystem. The IQ port, in response to one or more clocks generated by the TAC port, converts the received analog i and q signals receive discrete I and Q samples. These receive discrete I and Q samples are transferred via the PCIF to the PC for analyzing the ability of the RF subsystem under test to modulate the inputted transmit analog i and q signals on one or more RF carrier signals and to demodulate the RF carrier signals to output the receive analog i and q signals. The GPIO port exchanges auxiliary discrete data with the PC and auxiliary analog signals with the RF subsystem under test.