Photon Number Resolving Superconducting Detector

    公开(公告)号:US20240410749A1

    公开(公告)日:2024-12-12

    申请号:US18669307

    申请日:2024-05-20

    Abstract: A method of resolving a number of photons received by a photon detector includes optically coupling a waveguide to a superconducting wire having alternating narrow and wide portions; electrically coupling the superconducting wire to a current source; and electrically coupling an electrical contact in parallel with the superconducting wire. The electrical contact has a resistance less than a resistance of the superconducting wire while at least one narrow portion of the superconducting wire is in a non-superconducting state. The method includes providing to the superconducting wire, from the current source, a current configured to maintain the superconducting wire in a superconducting state in the absence of incident photons; receiving one or more photons via the waveguide; measuring an electrical property of the superconducting wire, proportional to a number of photons incident on the superconducting wire; and determining the number of received photons based on the electrical property.

    Photon number resolving superconducting detector

    公开(公告)号:US11988554B2

    公开(公告)日:2024-05-21

    申请号:US18103413

    申请日:2023-01-30

    CPC classification number: G01J1/44 G01J1/0407 G01J2001/4446

    Abstract: A method of resolving a number of photons received by a photon detector includes optically coupling a waveguide to a superconducting wire having alternating narrow and wide portions; electrically coupling the superconducting wire to a current source; and electrically coupling an electrical contact in parallel with the superconducting wire. The electrical contact has a resistance less than a resistance of the superconducting wire while at least one narrow portion of the superconducting wire is in a non-superconducting state. The method includes providing to the superconducting wire, from the current source, a current configured to maintain the superconducting wire in a superconducting state in the absence of incident photons; receiving one or more photons via the waveguide; measuring an electrical property of the superconducting wire, proportional to a number of photons incident on the superconducting wire; and determining the number of received photons based on the electrical property.

    Waveguide couplers for multi-mode waveguides

    公开(公告)号:US11275210B1

    公开(公告)日:2022-03-15

    申请号:US16693163

    申请日:2019-11-22

    Inventor: Mark Thompson

    Abstract: An optical coupler includes a first waveguide including a first multi-mode waveguide section having a cross-section characterized by a first height and a first width that is greater than the first height and a second waveguide including a second multi-mode waveguide section having a cross-section characterized by a second height and a second width that is greater than the second height. The first multi-mode waveguide section is positioned adjacent to the second multi-mode waveguide section at least partially above or below the second multi-mode waveguide so that light entering the first multi-mode waveguide section is coupled from the first multi-mode waveguide section to the second multi-mode waveguide section. Methods for coupling light between waveguides with the optical coupler and optical devices that include the optical coupler are also described.

    INTERFEROMETER FILTERS WITH COMPENSATION STRUCTURE

    公开(公告)号:US20220003928A1

    公开(公告)日:2022-01-06

    申请号:US17345724

    申请日:2021-06-11

    Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.

    Photon sources with multiple cavities for generation of individual photons

    公开(公告)号:US11163180B2

    公开(公告)日:2021-11-02

    申请号:US16275173

    申请日:2019-02-13

    Abstract: A method includes receiving input light having an input wavelength in a first optical resonator for causing resonance of the input light in the first optical resonator. The first optical resonator includes a non-linear optical medium. The method also includes converting at least a portion of the input light to a combination of first output light having a first output wavelength that is different from the input wavelength and second output light having a second output wavelength that is different from the input wavelength and the first output wavelength by passing the input light through the non-linear optical medium. The method further includes causing resonance of the first output light and the second output light in a second optical resonator. A portion of the first optical resonator is coupled to a portion of the second optical resonator.

    Interferometer filters with compensation structure

    公开(公告)号:US10534130B1

    公开(公告)日:2020-01-14

    申请号:US16514832

    申请日:2019-07-17

    Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.

    MULTI-MODE SPIRAL DELAY DEVICE
    7.
    发明公开

    公开(公告)号:US20240085631A1

    公开(公告)日:2024-03-14

    申请号:US18370785

    申请日:2023-09-20

    CPC classification number: G02B6/2861 G02B6/262 H01P9/00

    Abstract: An optical device includes a first multi-mode waveguide, a first optical coupler coupled to the first multi-mode waveguide, the first coupler being tapered and curved, and a first single-mode waveguide having a first end coupled to the first optical coupler. The optical device maybe used in an optical delay device. A method of propagating light in a first multi-mode waveguide toward a first optical coupler, propagating the light in the first optical coupler toward a first single-mode waveguide, the first optical coupler being tapered and curved, and propagating the light along the first single-mode waveguide is also disclosed.

    Interferometer filters with compensation structure

    公开(公告)号:US11874496B2

    公开(公告)日:2024-01-16

    申请号:US17987741

    申请日:2022-11-15

    Abstract: A photonic switch includes a first waveguide including a first region extending between a first coupler section and a second coupler section and a second region extending between the second coupler section and a third coupler section. The photonic switch also includes a second waveguide including a first portion extending between the first coupler section and the second coupler section, the first portion including at least two first compensation sections each having a different waveguide width, and a second portion extending between the second coupler section and the third coupler section, the second portion including at least two second compensation sections each having a different waveguide width. The photonic switch further includes at least one variable phase-shifter disposed in at least one of the first waveguide or the second waveguide.

    Superconducting Nanowire Single Photon Detector and Method of Fabrication Thereof

    公开(公告)号:US20210239518A1

    公开(公告)日:2021-08-05

    申请号:US17232086

    申请日:2021-04-15

    Abstract: A superconductor device is manufactured by depositing a barrier layer over a substrate including silicon, the barrier layer including silicon and nitrogen; depositing a seed layer for a superconductor layer over the barrier layer, the seed layer including aluminum and nitrogen; depositing the superconductor layer over the seed layer, the superconductor layer including a layer of a superconductor material, the barrier layer serving as an oxidation barrier between the layer superconductor material and the substrate; and depositing a silicon cap layer over the superconductor layer. In some embodiments, the superconductor device includes a waveguide and a metal contact at a sufficient distance from the waveguide to prevent optical coupling between the metal contact and the waveguide.

    Photon Sources with Multiple Cavities for Generation of Individual Photons

    公开(公告)号:US20190391416A1

    公开(公告)日:2019-12-26

    申请号:US16275173

    申请日:2019-02-13

    Abstract: A method includes receiving input light having an input wavelength in a first optical resonator for causing resonance of the input light in the first optical resonator. The first optical resonator includes a non-linear optical medium. The method also includes converting at least a portion of the input light to a combination of first output light having a first output wavelength that is different from the input wavelength and second output light having a second output wavelength that is different from the input wavelength and the first output wavelength by passing the input light through the non-linear optical medium. The method further includes causing resonance of the first output light and the second output light in a second optical resonator. A portion of the first optical resonator is coupled to a portion of the second optical resonator.

Patent Agency Ranking