Abstract:
A control system for providing a closed loop, real time control of a charged particle pencil beam is disclosed. The system includes a first detector apparatus, a second detector apparatus, a first orthogonal magnetic deflector apparatus, a second orthogonal magnetic deflector apparatus, and a controller. The controller compares the measured position and beam angle of the beam with a model position and beam angle of a model beam to determine an offset error and a beam angle error. The first orthogonal magnetic deflector apparatus includes a pair of electromagnets to correct a first component of the offset and beam angle errors. The second orthogonal magnetic deflector apparatus includes a pair of electromagnets to correct a second component of the offset and beam angle errors. The beam can be iteratively adjusted during patient therapy or short pauses in patient therapy.
Abstract:
A control system for providing a closed loop, real time control of a charged particle pencil beam is disclosed. The system includes a first detector apparatus, a second detector apparatus, a first orthogonal magnetic deflector apparatus, a second orthogonal magnetic deflector apparatus, and a controller. The controller compares the measured position and beam angle of the beam with a model position and beam angle of a model beam to determine an offset error and a beam angle error. The first orthogonal magnetic deflector apparatus includes a pair of electromagnets to correct a first component of the offset and beam angle errors. The second orthogonal magnetic deflector apparatus includes a pair of electromagnets to correct a second component of the offset and beam angle errors. The beam can be iteratively adjusted during patient therapy or short pauses in patient therapy.
Abstract:
A multi-resolution detector includes a high-resolution pixelated electrode and a low-resolution pixelated electrode. The high-resolution pixelated electrode includes a plurality of sub-arrays of first pixels. Each respective first pixel at each relative position in each sub-array is electrically connected in parallel with one another. The low-resolution pixelated electrode includes a plurality of second pixels. A control system receives as inputs an output from each pixelated detector. The control system uses the inputs to determine a physical position and a transverse intensity distribution of an incident charged particle pencil beam at the resolution of the high-resolution pixelated electrode.
Abstract:
A multi-resolution detector includes a high-resolution pixelated electrode and a low-resolution pixelated electrode. The high-resolution pixelated electrode includes a plurality of sub-arrays of first pixels. Each respective first pixel at each relative position in each sub-array is electrically connected in parallel with one another. The low-resolution pixelated electrode includes a plurality of second pixels. A control system receives as inputs an output from each pixelated detector. The control system uses the inputs to determine a physical position and a transverse intensity distribution of an incident charged particle pencil beam at the resolution of the high-resolution pixelated electrode.