Abstract:
A multi-layer charged particle beam characterization system is disclosed, and method for using the same. A typical embodiment includes a plurality of two-sided metal plates, arranged as a stack, each metal plate having an electrical contact tab extending from at least one common edge of the metal plate, and a plurality of insulator films disposed between adjacent metal plates, each insulator film is sized to match its corresponding metal plate. The tabs are coupled to a printed circuit board and connected to an external electrical connector to register a number of metal plates and insulator layers through which a charged particle beam has penetrated.
Abstract:
A multi-layer charged particle beam characterization system is disclosed, and method for using the same. A typical embodiment includes a plurality of two-sided metal plates, arranged as a stack, each metal plate having an electrical contact tab extending from at least one common edge of the metal plate, and a plurality of insulator films disposed between adjacent metal plates, each insulator film is sized to match its corresponding metal plate. The tabs are coupled to a printed circuit board and connected to an external electrical connector to register a number of metal plates and insulator layers through which a charged particle beam has penetrated.
Abstract:
A pencil beam system includes a charged particle beam generator, a transport beamline apparatus, a scan nozzle, a fast deflector electromagnet, and a controller. After a therapeutic dose is delivered to a first target spot, the fast deflector electromagnet generates a first magnetic field that causes the net deflection of the charged particle beam to transition from the first target spot to an adjacent target spot. After the charged particle beam is directed to the adjacent target spot, the controller simultaneously adjusts the first magnetic field and the scan nozzle magnetic field to reduce and eliminate the contribution of the first magnetic field to the net deflection. The fast deflector electromagnet is deliberately designed with limited magnetic field and limited deflecting power to provide a higher slew rate, faster settling and less hysteresis contribution to beam position as compared to the scan nozzle electromagnets.
Abstract:
A multi-layer charged particle beam characterization system is disclosed, and method for using the same. A typical embodiment includes a plurality of two-sided metal plates, arranged as a stack, each metal plate having an electrical contact tab extending from at least one common edge of the metal plate, and a plurality of insulator films disposed between adjacent metal plates, each insulator film sized to match its corresponding metal plate. The tabs are coupled to a printed circuit board and connected to an external electrical connector to register a number of metal plates and insulator layers through which a charged particle beam has penetrated.
Abstract:
An ionization chamber with spatial distribution electrode for monitor hadron beam currents used for therapeutic treatment. Ionization chamber comprises humidity control, environmental sensing and real-time correction thereof. A flexible hermetic seal provide for ambient pressure equalization. X-Y electrode planes measure Gaussian distribution of incident particle beam. Methods described herein are suitable to fabricate highly accurate, low scattering electrodes with high spatial resolutions.
Abstract:
A multi-layer charged particle beam characterization system is disclosed, and method for using the same. A typical embodiment includes a plurality of two-sided metal plates, arranged as a stack, each metal plate having an electrical contact tab extending from at least one common edge of the metal plate, and a plurality of insulator films disposed between adjacent metal plates, each insulator film is sized to match its corresponding metal plate. The tabs are coupled to a printed circuit board and connected to an external electrical connector to register a number of metal plates and insulator layers through which a charged particle beam has penetrated.
Abstract:
A multi-resolution detector includes a high-resolution pixelated electrode and a low-resolution pixelated electrode. The high-resolution pixelated electrode includes a plurality of sub-arrays of first pixels. Each respective first pixel at each relative position in each sub-array is electrically connected in parallel with one another. The low-resolution pixelated electrode includes a plurality of second pixels. A control system receives as inputs an output from each pixelated detector. The control system uses the inputs to determine a physical position and a transverse intensity distribution of an incident charged particle pencil beam at the resolution of the high-resolution pixelated electrode.
Abstract:
A multi-resolution detector includes a high-resolution pixelated electrode and a low-resolution pixelated electrode. The high-resolution pixelated electrode includes a plurality of sub-arrays of first pixels. Each respective first pixel at each relative position in each sub-array is electrically connected in parallel with one another. The low-resolution pixelated electrode includes a plurality of second pixels. A control system receives as inputs an output from each pixelated detector. The control system uses the inputs to determine a physical position and a transverse intensity distribution of an incident charged particle pencil beam at the resolution of the high-resolution pixelated electrode.
Abstract:
An ionization chamber with spatial distribution electrode for monitor hadron beam currents used for therapeutic treatment. Ionization chamber comprises humidity control, environmental sensing and real-time correction thereof. A flexible hermetic seal provide for ambient pressure equalization. X-Y electrode planes measure Gaussian distribution of incident particle beam. Methods described herein are suitable to fabricate highly accurate, low scattering electrodes with high spatial resolutions.