Abstract:
Systems, methods, and computer programs are disclosed for providing error detection or correction with flash cell mapping. One embodiment is a method comprising generating raw page data for a physical page in a main array of a flash memory device. The raw page data comprises less than a capacity of the physical page generated using a non-power-of-two flash cell mapping. One or more parity bits are generated for the raw page data using an error detection or correction scheme. The method stores the raw page data and the one or more parity bits in the physical page in the main array.
Abstract:
Various embodiments of methods and systems for calibration margin optimization of a target component in a portable computing device are disclosed. Because calibration of certain components is most optimally implemented when the component is at a certain operating temperature, or a series of certain operating temperatures, embodiments of the solution leverage thermal energy generation capabilities of nearby components to manage the operating temperature of a target component to be calibrated.
Abstract:
Systems, methods, and computer programs are disclosed for providing error detection or correction with flash cell mapping. One embodiment is a method comprising generating raw page data for a physical page in a main array of a flash memory device. The raw page data comprises less than a capacity of the physical page generated using a non-power-of-two flash cell mapping. One or more parity bits are generated for the raw page data using an error detection or correction scheme. The method stores the raw page data and the one or more parity bits in the physical page in the main array.
Abstract:
Systems, methods, and computer programs are disclosed for scheduling volatile memory maintenance events. One embodiment is a method comprising: a memory controller determining a time-of-service (ToS) window for executing a maintenance event for a volatile memory device coupled to the memory controller via a memory data interface; the memory controller providing a signal to each of a plurality of processors on a system on chip (SoC) for scheduling the maintenance event; each of the plurality of processors independently generating in response to the signal a corresponding schedule notification for the maintenance event; and the memory controller determining when to execute the maintenance event in response to receiving one or more of the schedule notifications generated by the plurality of processors and based on a processor priority scheme.