Abstract:
Methods, systems, and devices are provided that may support signaling, such as a Signaling Radio Bearer (SRB), over a flexible bandwidth carrier. For example, an SRB rate for a SRB over for a normal bandwidth carrier may be identified. A Transmission Time Interval (TTI) may be determined for the SRB over for the flexible bandwidth carrier that facilitates a SRB rate of the SRB over the flexible bandwidth carrier that maintains at least the SRB rate for the SRB over the normal bandwidth carrier. The determined TTI may be utilized for the SRB over the flexible bandwidth carrier, which may help avoid increased call setup delay, increased latency for handover, etc. that may be introduced in flexible bandwidth carrier systems. Some embodiments may include reducing spreading factors, increasing transmission power, and/or concatenating multiple transport blocks with respect to the SRB over the flexible bandwidth carrier.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
Methods, systems, and devices are provided that may address problems pertaining to effective transmit power control of a communications device operating in a wireless communications system. Some embodiments utilize mechanisms or techniques with dynamically adaptive steps sizes for transmit power control based on one or more trends. Some of these techniques may identify a trend in the transmit power control (TPC) commands and may adapt a TPC step size as a result. Other techniques may be utilized in which transmit power control is based on multiple interference estimates in a frame slot. Having multiple interference estimates at sub-slot intervals may provide additional transmit power control by allowing more transmit power adjustments, or more appropriate adjustments, for each slot. Metric calculations may be performed on one or more techniques to determine appropriate TPC operations.
Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
Methods, systems, and devices are disclosed for providing data, such as voice data for a voice service, over flexible bandwidth carriers. Some embodiments include support for 12.2 kbps and/or 7.95 kbps AMR CS voice over flexible bandwidth UMTS (F-UMTS) in particular. Some embodiments provide for keeping the information data rate for a flexible bandwidth carrier at least the same as that of a normal bandwidth carrier. For example, one voice frame may still be mapped to a 20 ms time window upon transmission, irrespective of a flexible bandwidth scaling factor N or chip rate divider Dcr in F-UMTS. The tools and techniques provided may be implemented on mobile devices and/or base stations. Flexible bandwidths carriers may utilize portions of spectrum that may be too big or too small to fit a normal bandwidth waveform for a normal bandwidth carrier.
Abstract translation:公开了用于通过灵活的带宽载体提供诸如用于语音服务的语音数据的数据的方法,系统和装置。 一些实施例特别地支持在灵活带宽UMTS(F-UMTS)上的12.2kbps和/或7.95kbps AMR CS语音。 一些实施例提供用于将灵活带宽载波的信息数据速率保持为与正常带宽载波的信息数据速率至少相同。 例如,无论F-UMTS中的灵活带宽缩放因子N或码片分频器Dcr如何,传输时仍可将一个语音帧映射到20ms的时间窗口。 所提供的工具和技术可以在移动设备和/或基站上实现。 灵活的带宽载波可以利用可能太大或太小的频谱部分,以适应普通带宽载波的正常带宽波形。
Abstract:
Methods, systems, and devices for mobility management for wireless communications systems that utilize a flexible bandwidth carrier are provided. Some embodiments include determining and transmitting assistance information to one or more user equipment (UEs) to facilitate mobility management with respect to the flexible bandwidth carrier. Some embodiments include signaling flexible bandwidth carrier information to UEs including, but not limited to: UE-centric approaches, network-centric approaches, network-centric approaches with PLMN, SIB creation approaches, and/or application layer approaches. A flexible bandwidth carrier may involve a wireless communications system that may utilize portions of spectrum that may not fit a normal bandwidth. A flexible bandwidth carrier may be generated with respect to a normal bandwidth carrier through dilating, or scaling down, the time or the chip rate of the flexible bandwidth carrier with respect to the normal bandwidth carrier. Some embodiments may expand a bandwidth for a flexible bandwidth carrier.
Abstract:
Apparatus and methods for channel estimation includes determining two streams corresponding to odd and even samples of a received signal that is sampled at a first chip rate, performing least squares successive interference cancellation on each of the two streams to obtain odd and even raw channel estimates, interlacing the odd and even raw channel estimates to obtain interlaced channel estimates, interpolating additional samples in the interlaced channel estimates to create higher chip rate channel estimates, identifying a first set of tap positions based on the higher chip rate channel estimates, and applying matching pursuit to the first set of tap positions to identify a second set of tap positions, wherein the second set of tap positions includes fewer tap positions than the first set of tap positions.
Abstract:
Methods, systems, and devices are provided that may enable wireless communications systems that utilize flexible bandwidths to transmit at the same or similar rates as wireless communications systems that utilize normal bandwidths. Some embodiments identify a target rate for a broadcast channel of a first bandwidth carrier system and transmit broadcast information utilizing the target rate. The target rate is higher than a scaled rate that results from scaling the rate for a broadcast channel of a second bandwidth carrier system by a bandwidth scaling factor. The first and second bandwidth carrier systems may be flexible and normal bandwidth carrier systems, respectively. To compensate for the bandwidth scaling and effectively maintain the rate at which information is transmitted in normal bandwidth carrier systems, different optimized schedules for system and master information transmission, different channelization codes and channels, and/or different scaled spreading factors may be identified and utilized.
Abstract:
Methods, systems, and devices are provided that may address problems pertaining to effective transmit power control of a communications device operating in a wireless communications system. Some embodiments utilize mechanisms or techniques with dynamically adaptive steps sizes for transmit power control based on one or more trends. Some of these techniques may identify a trend in the transmit power control (TPC) commands and may adapt a TPC step size as a result. Other techniques may be utilized in which transmit power control is based on multiple interference estimates in a frame slot. Having multiple interference estimates at sub-slot intervals may provide additional transmit power control by allowing more transmit power adjustments, or more appropriate adjustments, for each slot. Metric calculations may be performed on one or more techniques to determine appropriate TPC operations.