Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The method and apparatus resolve issues related to voice and data handovers between micro cells, femto cells and other small cells, and to handovers from macro cells to small cells are becoming increasingly significant as small cells are more widely deployed. In order to handoff a call associated with a user equipment, a base station attempts to identify neighboring cells that are within communication range of the user equipment based on a primary scrambling code and delays between multiple transmissions of the PSC detected by the user equipment and reported to the base station by the user equipment.
Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
Methods, systems, and devices are provided that may address problems pertaining to effective transmit power control of a communications device operating in a wireless communications system. Some embodiments utilize mechanisms or techniques with dynamically adaptive steps sizes for transmit power control based on one or more trends. Some of these techniques may identify a trend in the transmit power control (TPC) commands and may adapt a TPC step size as a result. Other techniques may be utilized in which transmit power control is based on multiple interference estimates in a frame slot. Having multiple interference estimates at sub-slot intervals may provide additional transmit power control by allowing more transmit power adjustments, or more appropriate adjustments, for each slot. Metric calculations may be performed on one or more techniques to determine appropriate TPC operations.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus communicates using a first radio based on a first radio technology and configures a second radio based on a second radio technology different from the first radio technology to receive signals transmitted based on a radio technology different from the second radio technology. The apparatus also measures a quality indicator of a signal received at the second radio. The signal is transmitted based on the radio technology different from the second radio technology.
Abstract:
An apparatus for wireless communication obtains a first metric of a cell based on signals received by a WWAN radio tuned to a common frequency, and a second metric of the cell based on signals received by a WLAN radio tuned to the common frequency. The apparatus determines a calibration factor based on the first and second metrics, and performs cell search and cell measurement based on the calibration factor and signals received by the WLAN radio tuned to a target frequency. The common frequency may be a serving frequency of the WWAN, in which case the first and second metrics are one of frequency or power metrics and the calibration factor is one of a frequency offset and a power offset. The common frequency may also be a target frequency for inter-frequency measurements of the WWAN, in which case the calibration factor is based primarily on power measurements.
Abstract:
Methods, systems, and devices are provided that may support paging over a flexible bandwidth carrier. For example, a reduced paging capacity with respect to a target paging capacity for the flexible bandwidth carrier may be identified. The reduced paging capacity for the flexible bandwidth carrier may be mitigated by various techniques. One technique may include increasing a number of paging indicators sent per frame over the flexible bandwidth carrier. Other techniques may include reducing a Spreading Factor (SF) for a physical channel or a Secondary Common Control Physical Channel (SCCPCH) carrying the paging indicators over the flexible bandwidth carrier. Further techniques may include utilizing a plurality of paging channels, which may include utilizing a plurality of Paging Indicator Channels (PICHs) or a plurality of SCCPCHs. Other techniques may include reducing a paging area for at least the flexible bandwidth carrier and a normal bandwidth carrier.
Abstract:
Methods, systems, and devices for mobility management for wireless communications systems that utilize a flexible bandwidth carrier are provided. Some embodiments include determining and transmitting assistance information to one or more user equipment (UEs) to facilitate mobility management with respect to the flexible bandwidth carrier. Some embodiments include signaling flexible bandwidth carrier information to UEs including, but not limited to: UE-centric approaches, network-centric approaches, network-centric approaches with PLMN, SIB creation approaches, and/or application layer approaches. A flexible bandwidth carrier may involve a wireless communications system that may utilize portions of spectrum that may not fit a normal bandwidth. A flexible bandwidth carrier may be generated with respect to a normal bandwidth carrier through dilating, or scaling down, the time or the chip rate of the flexible bandwidth carrier with respect to the normal bandwidth carrier. Some embodiments may expand a bandwidth for a flexible bandwidth carrier.
Abstract:
Methods, systems, and devices are provided that may address problems pertaining to effective transmit power control of a communications device operating in a wireless communications system. Some embodiments utilize mechanisms or techniques with dynamically adaptive steps sizes for transmit power control based on one or more trends. Some of these techniques may identify a trend in the transmit power control (TPC) commands and may adapt a TPC step size as a result. Other techniques may be utilized in which transmit power control is based on multiple interference estimates in a frame slot. Having multiple interference estimates at sub-slot intervals may provide additional transmit power control by allowing more transmit power adjustments, or more appropriate adjustments, for each slot. Metric calculations may be performed on one or more techniques to determine appropriate TPC operations.
Abstract:
A method of performing interference cancellation in a communication device having a plurality of transceivers includes: detecting a co-existence issue between a first transceiver and a second transceiver of the plurality of transceivers; determining parameters of the co-existence issue; selecting the first transceiver for providing an input signal to an interference cancellation (IC) circuit; selecting the second transceiver for receiving an output signal from the IC circuit; configuring the IC circuit based on the parameters of the co-existence issue; and generating the output signal based on the input signal and the parameters to reduce interference caused by the first transceiver on the second transceiver.