Abstract:
Aspects of the disclosure relate to techniques for mitigating the decoding errors observed at the receiver as a result of puncturing symbols between consecutive subframes having the same transmission direction. To reduce the decoding errors, a plurality of transmission options, each including a number of resource blocks and a modulation and coding scheme (MCS), may be identified. In addition, each transmission option may be associated with one or more puncturing patterns that hinder decoding of a codeword at the receiver. The base station or user equipment (UE) may then select or modify at least one aspect of a scheduling decision involving the communication of the codeword in a given subframe of at least two consecutive subframes to minimize decoding errors. For example, a selected puncturing pattern or a transport block size associated with a selected transmission option may be modified.
Abstract:
Methods, systems, and devices are described for wireless communication at a user equipment (UE). In some examples, the UE may identify an initialization and refresh (IR) packet at the radio link control (RLC) layer based the size of the IR packet, where the IR packet comprises a larger ciphered PDU size than a compressed RoHC packet. Accordingly, once the UE identifies the received packet as an IR packet, the UE may attempt to decipher the IR packet using one or more HFN offset values. In one example, the UE may determine whether the IR packet is deciphered correctly based on cyclic redundancy check (CRC) value of the deciphered IR packet. As a result, the present disclosure allows the UE to re-synchronize with the transmitting device by at least one of incrementing or decrementing an HFN value at the receiving device.
Abstract:
Methods, systems, and devices for wireless communications are described. A base station may transmit a first transport block including a first uplink grant which schedules a first set of uplink shared channel transmissions for the UE. The base station may monitor the channel to detect an energy value for a demodulation reference signal (DMRS) associated with the one or more uplink shared channel transmissions associated with the first uplink grant that is less than a threshold energy value. Based on the relatively low DMRS energy, the base station may modify a size of a second transport block relative to the first transport block, the second transport block including a second uplink grant that schedules a second set of one or more uplink shared channel transmissions for the UE. The base station may then signal the grant for the modified second transport block to the UE or to another device.
Abstract:
Methods, systems, and devices for wireless communication are described. Different robust header compression (RoHC) schemes may be used when a change in a header extension flag between packets of a communication session is determined. For example, a transmitting device may determine a value of a header extension flag in a packet has changed with respect to header extension flags in preceding packets. Upon detecting the change in the header extension flag, the device may compress the header using different RoHC schemes. For instance, the device may compress the header by reverting to an initialization and refresh (IR) state. Additionally or alternatively, the device may compress the header using a compression profile that refrains from compressing a certain portion of the header. In some cases, the RoHC scheme used for compressing the header may be based on how frequently the value of the extension flag changes between packets.
Abstract:
Methods, systems, and devices may implement a header repair mechanism to deal with a loss of successive compressed headers (e.g., due to radio interface). The present methods and apparatus exploit the fact that once a correct timestamp (TS) from a previous decompression success (called “last successfully decomp_TS”) is known, another (e.g., a subsequent) TS should be in the form: last successfully decomp_TS+n*min_TS_STRIDE, where n is a positive integer if the estimated sequence number (SN) is higher than the last successfully decompressed SN, and a negative integer if the estimated SN is lower than the last successfully decompressed SN, and min_TS_STRIDE is the expected minimum TS increment, which is known and directly related to the medium sample rate and frame rate, for example.
Abstract:
Methods, systems, and devices may implement a header repair mechanism to deal with a loss of successive compressed headers (e.g., due to radio interface). The present methods and apparatus exploit the fact that once a correct timestamp (TS) from a previous decompression success (called “last successfully decomp_TS”) is known, another (e.g., a subsequent) TS should be in the form: last successfully decomp_TS+n*min_TS_STRIDE, where n is a positive integer if the estimated sequence number (SN) is higher than the last successfully decompressed SN, and a negative integer if the estimated SN is lower than the last successfully decompressed SN, and min_TS_STRIDE is the expected minimum TS increment, which is known and directly related to the medium sample rate and frame rate, for example.
Abstract:
Aspects disclosed herein facilitate security handling of 5GS to EPC reselection are disclosed herein. An example method at a UE includes transmitting a first TAU request, the first TAU request encoded using a first security context associated with a first RAT, the first TAU request being integrity protected using a first uplink count based on the first security context, and the first TAU request including a first set of information including an identifier mapped to a second RAT associated with the first network entity. The example method also includes transmitting a second TAU request, the second TAU request including the first set of information, the second TAU request being integrity protected using a second uplink count. The example method also includes communicating based on a mapped security context based on the first security context and at least one of the first uplink count or the second uplink count.
Abstract:
A recovery mechanism for robust header compression (ROHC) is disclosed for wireless communication systems. The ROHC recovery mechanism may allow a receiver and/or transmitter in the wireless systems to establish or reestablish a context of a packet transmission session when an initialization and refresh message is lost. In the ROHC recovery mechanism, upon receiving a compressed packet that is not associated with a context, a receiver sends a message to a transmitter suggesting the transmitter to transition to another mode. Upon receiving a subsequent packet transmission that is not associated with a context, the receiver sends another message indicating that a context has not been established or has been lost. The transmitter may then send the receiver necessary information to establish a context for the packet transmission session.
Abstract:
Aspects generally relate to wireless communications and, more particularly, to methods, systems and apparatus for timing synchronization during a wireless uplink random access procedure. For example, certain aspects relate to a technique for receiving first timing advance information associated with uplink wireless communications with a base station (BS), transmitting a random access connection request message to the BS, receiving a random access response from the BS while the first timing advance information is within a valid time period, the random access response comprising second timing advance information associated with uplink wireless communications with the base station, determining, after receiving the random access response, that the valid time period for the first timing advance information has expired, and utilizing the second timing advance information for uplink communications with the BS after determining that the valid time period for the first timing advance information has expired. Numerous other aspects are provided.
Abstract:
Aspects of the present disclosure generally relate to wireless communications and, more particularly, to techniques for paging during Long Term Evolution (LTE) discontinuous reception (DRX) operations. Aspects generally include determining whether one or more paging occasions from a base station (BS) occur while a receiver of an apparatus is in an active state based on a discontinuous reception (DRX) cycle, adjusting a period that the receiver is in the active state during the DRX cycle if at least one paging occasion does not occur while the receiver is in the active state, and monitoring for at least one paging occasion occurring while the receiver is in the active state during the adjusted period.