Abstract:
A method and apparatus are disclosed for a wireless communication device capable of scanning for radar signals while detecting and/or receiving a wireless communication signal. The wireless communication device may include a plurality of local oscillator synthesizers to allow distinct frequency bands to be used for wireless communication signals and radar detection. In some embodiments, the wireless communication device may include a radar detection physical layer (PHY) circuit to detect the presence of radar signals within a received RF signal. The radar detection PHY may have limited functionality suitable primarily for radar signal analysis and not suitable for processing (decoding) communication signals.
Abstract:
This disclosure describes techniques for providing active interference cancellation in a wireless communication system having a Bluetooth transmit chain and a WLAN receive chain. A signal sampled from the Bluetooth transmit chain is gain and phase adjusted to offset interference in the WLAN receive chain. A quadrature phase shifter may be used to generate quadrature components of the sampled signal that are selectively combined to achieve a desired phase adjustment. The phase shifter may be stabilized by a variable capacitor. These techniques may be extended to MIMO systems.
Abstract:
A multi-band amplifier may operate in a first frequency band and a second frequency band. The multi-band amplifier may include a first amplifier, a second amplifier, and a coupler. The coupler may couple a signal, such as a communication signal, to a selected amplifier. In some embodiments, the coupler may include one or more inductive elements to couple the signal to the first or the second amplifier. In some embodiments, the inductive elements may include a balun.
Abstract:
A wireless communications device that produces phase-synchronized local oscillator (LO) signals. The device includes a first transceiver chain to receive a first timing signal and a second transceiver chain to receive the first timing signal and a second timing signal. The first transceiver chain includes a first frequency divider to convert the first timing signal to a first LO signal. The second transceiver chain includes a multiplexer to select one of the timing signals based at least in part on a mode select signal. A second frequency divider in the second transceiver chain converts the selected timing signal to a second LO signal, and a phase alignment circuit aligns a phase of the second LO signal with a first alignment signal. The first alignment signal is activated, for a limited duration, in response to a change in state of the mode select signal.