Abstract:
The present disclosure presents a method and an apparatus for off-loading user equipment (UE) from a small cell base station. For example, the method may include identifying a first and a second set of UEs from a plurality of UEs at a small cell base station, prioritizing the first and the second set of UEs, and off-loading one or more UEs from the first or the second set of UEs based at least on the prioritization. As such, off-loading of UEs from a small cell base station may be achieved.
Abstract:
Provided are methods and apparatus for selecting a communication channel. The methods and apparatus select a channel having the least interference and minimize a number of different channels in use. For example, a method for selecting a communication channel includes measuring a transmission characteristic for each channel in a plurality of channels to create a transmission characteristic measurement for each channel. The method also includes receiving, from at least one neighboring access point, data indicating the neighboring access point uses a channel in the plurality of channels. A utility value for each channel in the plurality of channels is calculated by weighting, based on the number of the neighboring access points using each channel in the plurality of channels, the transmission characteristic measurement for each channel in the plurality of channels. Further, the channel having the highest or the lowest utility value is chosen as the communication channel.
Abstract:
The present disclosure presents a method and an apparatus for heavy active estimation mechanism for backhaul management at a small cell base station. For example, the method may include identifying, at the small cell base station, that a throughput of a user equipment (UE) in communication with the small cell base station is potentially limited due to backhaul congestion at the small cell base station, establishing a proxy flow between the small cell base station and a transmission control protocol (TCP) proxy peer in response to the identifying, wherein the proxy flow data packets are transmitted from the small cell base station to the TCP proxy peer or from the TCP proxy peer to the small cell base station, calculating a throughput of the proxy flow for a pre-determined time period, and determining whether the throughput of the UE is limited by backhaul congestion at the small cell base station based on the calculated throughput of the proxy flow. As such, heavy active estimation mechanism for backhaul management at a small cell base station may be achieved.
Abstract:
Provided are methods and apparatus for selecting a channel to use for communicating. The methods and apparatus select a channel having the least interference and minimize a number of different channels in use. For example, a provided method includes calculating a utility value for each channel in a plurality of channels by weighting, based on a number of the neighborhood small cells (NSC) using each channel in the plurality of channels, both a respective modified non-NSC received signal strength indication (RSSI) and a respective modified reference signal received power (RSRP). The non-NSC RSSI is calculated by subtracting a respective RSRP from a total RSSI. The respective modified RSRP for each channel in the plurality of channels is calculated by applying the respective RSRP to a cumulative distribution function. The channel having the highest or the lowest utility value is chosen as the channel to use for the communicating.
Abstract:
The present disclosure presents a method and an apparatus for optimizing coverage area of a small cell. For example, the disclosure presents a method for estimating an available backhaul capacity of a small cell and determining a target OTA data rate for the small cell based at least on the estimated available backhaul capacity, and changing a coverage area of the small cell based at least on the determined target OTA data rate by. As such, optimizing coverage area of a small cell may be achieved.
Abstract:
The present disclosure presents a method and an apparatus for a light active estimation mechanism for backhaul management at a small cell base station. For example, the method may include transmitting a first data packet from the small cell base station to a network entity, receiving a second data packet from the network entity in response to the transmission, calculating a time delay between the transmitting of the first data packet and the receiving of the second data packet, and determining whether or not a backhaul of the small cell base station is congested based on the calculated time delay. As such, light active estimation mechanism for backhaul management at a small cell base station may be achieved.
Abstract:
The present disclosure presents a method and an apparatus for calibrating a small cell base station for backhaul management. For example, the method may include exchanging backhaul probing messages with a probing server by initiating a plurality of probing packets at the small cell base station, wherein the exchanging is performed over a backhaul after determining that a full queue condition associated with the backhaul is satisfied, computing calibration statistics for the backhaul based on characteristics associated with the backhaul probing messages, and adjusting one or more backhaul parameters of the small cell based on the calibration statistics. As such, calibration of a small cell base station for backhaul management may be achieved.