摘要:
A transmitting device, a receiving device, an optical communication system, and associated methods are provided. The transmitting device transmits an optical signal containing data, and comprises: an optical tone generator for generating at least one optical tone; at least one encoder for performing advanced coding on at least one data signal respectively, each of the at least one data signal carrying a part of the data; at least one mapper for performing high order modulation on the at least one coded data signal; and an up-converter for up-converting the at least one high-order-modulated data signal into the optical signal to be outputted through the at least optical tone. Thereby, high speed (e.g., over 1-Tb/s) transmission per single channel over a long-haul distance (e.g. over 1000-km) with error-free recovery may be achieved.
摘要:
An adaptive imaging method of monitoring intrafraction target motion during radiation therapy is provided that includes using a simultaneous Mega-Voltage (MV) imaging process and Kilo-Voltage (KV) imaging process to determine an initial 3D target position. 2D target position is monitored using the MV imaging process during a radiation therapy treatment delivery, and is in combination with an online-updated characterization of target motion that are disposed to estimate if the target has moved beyond a 3D threshold distance. The simultaneous MV imaging and KV imaging processes are for accurately determining a new 3D target position for intrafraction motion compensation and for further 2D imaging by the MV imaging process, where another simultaneous MV and KV imaging process is initiated when the target has potentially moved beyond the threshold distance as measured by the MV imaging process. The intrafraction target motion monitoring is achieved at the cost of ultralow patient imaging dose.
摘要:
An adaptive imaging method of monitoring intrafraction target motion during radiation therapy is provided that includes using a simultaneous Mega-Voltage (MV) imaging process and Kilo-Voltage (KV) imaging process to determine an initial 3D target position. 2D target position is monitored using the MV imaging process during a radiation therapy treatment delivery, and is in combination with an online-updated characterization of target motion that are disposed to estimate if the target has moved beyond a 3D threshold distance. The simultaneous MV imaging and KV imaging processes are for accurately determining a new 3D target position for intrafraction motion compensation and for further 2D imaging by the MV imaging process, where another simultaneous MV and KV imaging process is initiated when the target has potentially moved beyond the threshold distance as measured by the MV imaging process. The intrafraction target motion monitoring is achieved at the cost of ultralow patient imaging dose.
摘要:
A facility for using a mobile device to search video content takes advantage of computing capacity on the mobile device to capture input through a camera and/or a microphone, extract an audio-video signature of the input in real time, and to perform progressive search. By extracting a joint audio-video signature from the input in real time as the input is received and sending the signature to the cloud to search similar video content through the layered audio-video indexing, the facility can provide progressive results of candidate videos for progressive signature captures.
摘要:
Real-time 3D tracking of anatomical positions during radiation therapy uses acquired image data from an MV treatment beam as it is rotated around the patient during arc radiotherapy treatment. The acquired image data and associated angular positions are computationally combined during the arc radiotherapy treatment to estimate in real time 3D positions of anatomical features of the patient, e.g., combining present image data and prior image data at earlier times. Supplementary image data from a kV imaging system may be acquired on an as-needed basis if MV position estimates indicate movement exceeding a predetermined threshold, and the supplementary kV image data combined with the acquired MV image data to improve an accuracy of the estimated 3D positions.