摘要:
An RF linearizer and an associated method are provided for linearizing a power amplifier. The RF linearizer may include: (a) a quadrature up-converter for up-converting a baseband input signal that is to be transmitted by the power amplifier; (b) an RF analog predistorter controlled by a set of coefficients for predistorting the up-converted input signal; (c) a down-converter for down-converting an output signal of the power amplifier; (d) an error monitor receiving the down-converted output signal and the input signal for providing an error signal; and (e) a signal analyzer receiving the error signal, the signal analyzer using an out-of-band power spectrum of the error signal to optimize the set of coefficients. The input signal may have an in-phase component and a quadrature component.
摘要:
RF predistortion apparatus for making linear the output signal of non-linear components such as RF power amplifiers. The apparatus comprises an RF input line for carrying an RF signal connected to an envelope detector for finding the envelope of the RF signal, a power detector for finding the power of the RF signal and a quadrature modulator. The apparatus also comprises a coefficient vector input line for carrying an input signal that carries one or more coefficients to a digitally controlled analog subsystem (DCAS). The DCAS having circuitry for processing both the output of the envelope detector and the output of the power detector by selecting one or more coefficients from the coefficient vector input line for generating a weighted summation of the power of the RF signal and a weighted summation of the envelope voltage of the RF signal that are output to the quadrature modulator. The quadrature modulator has circuitry for mixing the RF input signal with the output of the DCAS to generate a signal for predistorting the RF input signal feeding the power amplifier.
摘要:
RF predistortion apparatus for making linear the output signal of non-linear components such as RF power amplifiers. The apparatus comprises an RF input line for carrying an RF signal connected to an envelop detector for finding the envelop of the RF signal, a power detector for finding the power of the RF signal and a quadrature modulator. The apparatus also comprises a coefficient vector input line for carrying an input signal that carries one or more coefficients to a digitally controlled analog subsystem (DCAS). The DCAS having circuitry for processing both the output of the envelop detector and the output of the power detector by selecting one or more coefficients from the coefficient vector input line for generating a weighted summation of the power of the RF signal and a weighted summation of the envelop voltage of the RF signal that are output to the quadrature modulator. The quadrature modulator has circuitry for mixing the RF input signal with the output of the DCAS to generate a signal for predistorting the RF input signal feeding the power amplifier.
摘要:
A current steering mechanism is provided in a radio transmitter (e.g., a multiband radio transmitter) to provide compatibility with a variety of baseband parts. Different proportions of an input signal current (“in”) are steered to a dummy load, a mixer for a first band, and at least one other mixer for a second band. The mechanism is structured to selectively apportion a current input signal between multiple paths of the same polarity having respective load circuits and concurrently steer different proportions of the current input signal to a dummy load path and at least one mixer path.
摘要:
A current steering mechanism is provided in a radio transmitter (e.g., a multiband radio transmitter) to provide compatibility with a variety of baseband parts. Different proportions of an input signal current (“in”) may be steered to a dummy load (103), a mixer for a first band (106), and a mixer for a second band (108). In one example, five different loads are provided, one dummy load (103) and two different loads (105, 107) for each band. Possibilities include: 1. All current steered into dummy load via transistor A; 2. All current steered into Band 1 mixer via transistor B; 3. All current steered into a Band 1 mixer via transistor C, causing 6 dB input signal amplification; 4. All current steered into Band 2 mixer via transistor E; 5. All current steered into a Band 2 mixer via transistor D, causing 6 dB input signal amplification; 6. Like cases 2-5 but with diversion of some portion of current via a dummy load for attenuation of input signal in 1 dB steps.
摘要:
A circuit comprises a frequency synthesizing circuit with a voltage-controlled oscillator whose frequency is preset to a preset value. The voltage-controlled oscillator generates an oscillating signal in response to an input voltage. The frequency synthesizing circuit is configured to operate in a locked loop mode under control of an error signal representative of a phase frequency differential between the divided oscillating signal and a reference signal. A digital processing unit can disable the frequency synthesizing circuit to operate in phase locked loop mode. Once the synthesizing circuit is disabled, the digital processing unit determines a first and a second frequency of the oscillating signal in response to respective first and second loop filter input voltage values. The unit further generates a control value from the two frequencies, the frequency divider dividing ratio and the reference signal. The circuit further comprises a digital to analog converter configured to preset the loop filter input voltage to a preset value in response to the control value. Once the voltage controlled oscillator output oscillates at the corresponding input preset value, the digital processing unit disables the digital to analog converter and enables the frequency synthesizing to operate in phase locked loop mode.
摘要:
Systems and methods according to the present invention address this need and others by providing filter tuning methods and apparatuses which directly measure filter attenuation by transmitting signaling tones through the filter(s). The measured attenuation is compared with the desired frequency response of the filter. The result of the comparison is used to tune the filter(s).
摘要:
A current steering mechanism is provided in a radio transmitter (e.g., a multiband radio transmitter) to provide compatibility with a variety of baseband parts. Different proportions of an input signal current (“in”) are steered to a dummy load, a mixer for a first band, and at least one other mixer for a second band. The mechanism is structured to selectively apportion a current input signal between multiple paths of the same polarity having respective load circuits and concurrently steer different proportions of the current input signal to a dummy load path and at least one mixer path.
摘要:
A current steering mechanism is provided in a radio transmitter (e.g., a multiband radio transmitter) to provide compatibility with a variety of baseband parts. Different proportions of an input signal current (“in”) may be steered to a dummy load (103), a mixer for a first band (106), and a mixer for a second band (108). In one example, five different loads are provided, one dummy load (103) and two different loads (105, 107) for each band. Possibilities include: 1. All current steered into dummy load via transistor A; 2. All current steered into Band 1 mixer via transistor B; 3. All current steered into a Band 1 mixer via transistor C, causing 6 dB input signal amplification; 4. All current steered into Band 2 mixer via transistor E; 5. All current steered into a Band 2 mixer via transistor D, causing 6 dB input signal amplification; 6. Like cases 2-5 but with diversion of some portion of current via a dummy load for attenuation of input signal in 1 dB steps.
摘要:
A current mirror divides an input source voltage dynamically, to provide a controlled voltage that corresponds to an output load voltage. The correspondence between this controlled voltage and the output load voltage determines the correspondence between the output current and the input current. By dynamically adjusting the controlled voltage, the correspondence to the output load voltage can be maintained to very low voltage. Preferably, the output load voltage is also dynamically divided to provide a comparison voltage for comparing to the controlled voltage when the output load voltage is high, thereby providing the appropriate output current at high voltage levels. The combination of these two techniques provides a wide output voltage compliance, and a high output impedance.